Skip to main content

Genetic engineering stress tolerant plants for phytoremeditation

  • Chapter
Abiotic stress tolerance in plants
  • 1437 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Terry, N., Zayed, A.M., de Souza, M.P. and Tarun, A.S. (2000) Ann. Rev. Plant Physiol. Plant Mol. Biol. 51, 401-432

    Article  CAS  Google Scholar 

  2. Suresh, B. and Ravishankar, G.A. (2004) Phytoremediation. a novel and promising approach for environmental clean-up. Crit. Rev. Biotechnol. 24, 97-124.

    Article  CAS  PubMed  Google Scholar 

  3. Glass, D.J. (2000) Economic potential of phytoremediation: In Phytoremediation of Toxic Metals -Using Plants to Clean up the Environment (Raskin, I. and Ensley, B.D., eds). New York.

    Google Scholar 

  4. Cunningham, S.D. and Berti, W.R. (2000) Phytoextraction and phytostabilization: technical, economic and regulatory considerations of the soil-lead issue: In Phytoremediation of Contaminated Soil and Water (Terry, N. and G. Bañuelos, G., eds). FL : CRC Press LLC, Boca Raton.

    Google Scholar 

  5. Cookson, J.T. (1995) Bioremediation Engineering, Design and Application. New York, McGraw-Hill, Inc.

    Google Scholar 

  6. Chaudhry, Q., Blom-Zandstra, M., Gupta, S. and Joner, E.J. (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ. Sci. Pollut. Res. Int. 12, 34-48.

    Article  CAS  PubMed  Google Scholar 

  7. Blaylock, M. (2000) Field demonstrations of phytoremediation of lead-contaminated soils. In Phytoremediation of Contaminated Soil and Water (Terry, N. and G. Bañuelos, G., eds). FL: CRC Press LLC, Boca Raton.

    Google Scholar 

  8. Horne, A.J. (2000) Phytoremediation by constructed wetlands: In Phytoremediation of Contaminated Soil and Water (Terry, N. and BañuelosG.G. , , eds). FL : CRC Press LLC, Boca Raton.

    Google Scholar 

  9. Bañuelos, G.S. (2000) Factors influencing field phytoremediation of selenium-laden soil. In Phytoremediation of Contaminated Soil and Water (Terry, N. and BañuelosG.G. , eds). FL : CRC Press LLC, Boca Raton.

    Google Scholar 

  10. Brooks, R.R. (1994) Plants that hyperaccumulate heavy metals. In Plants and the Chemical Elements: Biochemistry, Uptake, Tolerance and Ttoxicity (Garago, M.E., ed). Weinheim, Germany: VCH Verlagsgesellsschaft, pp. 88-105.

    Google Scholar 

  11. Cunningham, S., Shann, J., Crowley, D. and Anderson, T. (1997) Phytoremediation of contaminated water and soil: In Phytoremediation of Soil and Water Contaminants (Kruger, E., Anderson, T. and Coats, J., eds) Washington, D.C. : ACS Symposium Series 664, pp. 2-17.

    Chapter  Google Scholar 

  12. Bañuelos, G. and Schrale, G. (1989) Plants that remove selenium from soils. Calif. Agric. 43, 19-20.

    Google Scholar 

  13. Bañuelos, G.S., Ajwa, H.A., Mackey, M., Wu, L., Cook, C., Akohoue, S. and Zambruzuski, S. (1997) Accumulation of selenium by different plant species grown under increasing sodium and calcium chloride salinity. J. Environ. Qual. 26, 639-646.

    Google Scholar 

  14. Hasegawa, E. Terada, M. Sunairi, H. Wakita, F. Shinmachi, A. Noguchi, M. Nakajima and J. Yazaki, (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil. 196, 277-281.

    Article  CAS  Google Scholar 

  15. Pilon-Smits, E.A.H., Hwang S., Mel Lytle C., Zhu Y., Tai J.C., Bravo R.C., Chen Y., Leustek, T. and Terry, N. (1999) Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol. 119, 123-132.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, Y., Pilon-Smits, E.A.H., Jouanin, L. and Terry, N. (1999) Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119, 73-80.

    Article  CAS  Google Scholar 

  17. Zhu, Y., Pilon-Smits, E.A.H., Tarun, A., Weber, S.U., Jouanin, L. and Terry N. (1999), Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol. 121, 1169-1178.

    Article  CAS  PubMed  Google Scholar 

  18. Kramer, U. and Chardonnens, A.N. (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl. Microbiol. Biotechnol. 55, 661-672.

    Article  CAS  PubMed  Google Scholar 

  19. Dhanker, O.P., Li, Y., Rosen, B.P., Shi, J., Salt, D., Senecoff, J.F., Sashti, N.A. and Meagher, R.B. (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol. 20, 1140-1145.

    Article  CAS  Google Scholar 

  20. Pilon-Smits, E.A.H. and Pilon, M. (2002) Phytoremediation of metals using. transgenic plants. Crit. Rev. Plant Sci. 21, 439-456.

    Article  CAS  Google Scholar 

  21. Bennett, L.E., Burkhead, J.L., Hale, K.L., Terry, N., Pilon, M. and Pilon-Smits, E.A.H. (2003) Analysis of transgenic indian Mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual. 32, 432-440.

    Article  CAS  PubMed  Google Scholar 

  22. Pilon, M., Owen, J.D., Garifullina, G.F., Kurihara, T., Mihara, H., Esaki, N. and Pilon-Smits, EA.H. (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol. 131, 1250-1257.

    Article  CAS  PubMed  Google Scholar 

  23. Song, W.Y., Sohn, E.J., Martinoia, E., Lee, Y.J., Yang, Y.Y., Jasinski, M., Forestier, C., Hwang, I. and Lee, Y. (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotechnol. 21, 914-919.

    Article  CAS  PubMed  Google Scholar 

  24. Van Huysen, T., Abdel-Ghany, S., Hale, K.L., LeDuc, D., Terry, N., Pilon-Smits, E.A.H. (2003) Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea. Planta 218, 71-78.

    Article  CAS  PubMed  Google Scholar 

  25. LeDuc, D.L., Tarun, A.S., Montes-Bayon, M., Meija, J., Malit, M.F., Wu, C.P., AbdelSamie, M., Chiang, C.Y., Tagmount, A., deSouza, M., Neuhierl, B., Bock, A., Caruso, J. and Terry, N. (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol. 135, 377-383.

    Article  CAS  PubMed  Google Scholar 

  26. Van Huysen, T., Terry, N. and Pilon-Smits, E.A.H. (2004) Exploring the selenium phytoremediation potential of transgenic Indian musturd overexpressing ATP sulfurylase or cystathionine- gamma -synthetase. Int. J. Phytorem. 6, 111-118.

    Article  CAS  Google Scholar 

  27. Bañuelos, G., Terry, N., LeDuc, D.L., Pilon-Smits, E.A.H. and Mackey, B. (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ. Sci. Technol. 39, 1771-1777.

    Article  PubMed  CAS  Google Scholar 

  28. McGrath, S.P., Zhao, F.J. and Lombi E. (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv. Agron. 75, 1-56.

    Article  CAS  Google Scholar 

  29. Curie, C., Alonso, J.M., Le Jean, M., Ecker, J.R. and Briat, J.F. (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem. J. 347, 749-755.

    Article  CAS  PubMed  Google Scholar 

  30. Hirschi, K.D., Korenkov, V.D., Wilganowski, N.L. and Wagner, G.J. (2000) Expression of arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124, 125-133.

    Article  CAS  PubMed  Google Scholar 

  31. Thomine, S., Wang, R., Ward , J.M, Crawford, N.M. and Schroeder, J.I. (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Natl. Acad. Sci. USA. 97, 4991-4996.

    Article  CAS  PubMed  Google Scholar 

  32. Goto, F., Yoshihara, T. and Saiki, H. (1998) Iron accumulation in tobacco. plants expressing soyabean ferritin gene. Transgenic Res. 7, 173-180.

    Article  CAS  Google Scholar 

  33. Goto, F., Yoshihara, T., Shigemoto, N., Toki, S. and Takaiwa, F. (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol. 17, 282-286.

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi, M., Nakanishi, H., Kawasaki, S., Nishizawa, N.K. and Mori S. (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat. Biotechnol. 19, 466-469.

    Article  CAS  PubMed  Google Scholar 

  35. Delhaize, E. and Ryan, R. (1995) Aluminum toxicity and tolerance in plants Plant Physiol. 107, 315.-321.

    PubMed  Google Scholar 

  36. Larsen, P.B., Degenhardt, J., Stenzler, L.M., Howell, S.H. and Kochian, L.V. (1998) Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol. 117, 9-17.

    Article  CAS  PubMed  Google Scholar 

  37. Medappa, K.C. and Dana, M.N. (1970) J. Am. Soc. Hortic. Sci. 95, 107.

    CAS  Google Scholar 

  38. Zhou, J. and Goldsbrough, P. B. (1995). Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol. Gen. Genet. 248, 318-328.

    Article  CAS  PubMed  Google Scholar 

  39. Cobbett, C.S. (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 125, 825-832.

    Article  Google Scholar 

  40. Reeves, R.D. and Baker, A.J.H. (2000) Metal hyperaccumulating hlants: Phytoremediation of toxic metals: using plants to clean up the environment. Eds. I. Raskin and B.D. Ensley, Wiley, New York.

    Google Scholar 

  41. Lasat, M.M. (2002) Phytoextraction of toxic metals. J. Environ. Qual., 31, 109-120.

    Article  CAS  PubMed  Google Scholar 

  42. Eapen, S. and D’Souza, S.F. (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol. Adv. 23, 97-114.

    Article  CAS  PubMed  Google Scholar 

  43. Slootmaker, L.A.J. (1974) Tolerance to high soil acidity. in wheat related species, rye and triticale. Euphytica 23, 505-513.

    Article  Google Scholar 

  44. Eenink, A.H. and Garretsen, G. (1977) Inheritance of insensitivity of lettuce to a surplus of exchangeable manganese in steam sterilized soils. Euphytica 26, 47-53.

    Article  Google Scholar 

  45. Howden, R., Goldsbrough, P.B., Andersen, C.R. and Cobbett, C.S. (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 107, 1059-1066

    Article  CAS  PubMed  Google Scholar 

  46. Larsen, P.B., Degenhardt, J., Tai, C.Y., Stenzler, L.M., Howell, S.H. and Kochian, L.V. (1998) Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol. 117, 9-17.

    Article  CAS  PubMed  Google Scholar 

  47. van den Burg, B. (2003) Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6, 213-218.

    Article  CAS  PubMed  Google Scholar 

  48. Croal, L.R., Gralnick, J.A., Malasarn, D. and Newman, D.K. (2004) The Genetics of Geochemistry. Annu. Rev. Genet. 38, 175-202.

    Article  CAS  PubMed  Google Scholar 

  49. Neuhierl, B. and Böck, A. (1996) On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus. Eur. J. Biochem. 239, 235-238.

    Article  CAS  PubMed  Google Scholar 

  50. Brown, T. and Shrift A (1981) Exclusion of selenium from proteins in selenium-tolerant Astragalus species. Plant Physiol 67, 1951-953.

    Article  Google Scholar 

  51. Summers, A.O. (1986). Organization, expression and evolution of genes for mercury resistance. Annu. Rev. Microbiol. 40, 607-634.

    Article  CAS  PubMed  Google Scholar 

  52. Rugh, C.L., Bizily, S.P. and Meagher, R.B. (2000) Phytoremediation of environmental mercury pollution: In Phytoremediation of Toxic Metals - Using Plants to Clean up the Environment (Raskin, I. and Ensley, B.D., eds). New York.

    Google Scholar 

  53. Ruiz, O.N., Hussein, H.S., Terry, N. and Daniell, H. (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol. 132, 1344-1352.

    Article  CAS  PubMed  Google Scholar 

  54. Daniell, H., Khan, K.S. and Allison, L. (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci. 7, 84-89.

    Article  CAS  PubMed  Google Scholar 

  55. Grill, E., Loeffler, S., Winnacker, E.L. and Zenk. M.H. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific ³-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase) . Proc. Natl. Acad. Sci. USA 86, 6838-6842.

    Article  CAS  PubMed  Google Scholar 

  56. Gallego, S.M., Benavídes, M.P. and Tomaro, M.L. (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci. 121, 151-159.

    Article  CAS  Google Scholar 

  57. Zenk, M.H. (1996) Heavy metal detoxification in higher plants. Gene, 179, 21-30.

    Article  CAS  PubMed  Google Scholar 

  58. de Souza, M. P., Pilon-Smits, E.A.H., Lytle, C.M., Hwang, S., Tai, J., Honma, T.S.U., Yeh, L. and Terry, N. (1998) Rate limiting steps in Se assimilation and volatilization by Brassica juncea. Plant Physiol. 117,1487-1494.

    Article  CAS  PubMed  Google Scholar 

  59. Bañuelos, G.S., Ajwa, H.A., Wu, L., Guo, X., Akohoue, S. and Zambrzuski, S. (1997) Selenium-Induced Growth Reduction inBrassicaLand Races Considered for Phytoremediation. Ecotox. Environ. Safe. 36, 282-287.

    Article  Google Scholar 

  60. May, M.J., Vernoux, T., Leaver, C., Van Montagu, M. and Inzé, D. (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J. Exp. Bot. 49, 649-667.

    Article  CAS  Google Scholar 

  61. Noctor, G., Arisi, A.C.M., Jouanin, L., Kunert, K.J., Rennenberg, H. and Foyer, C.H. (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants J. Exp. Bot. 49, 623-647.

    Article  CAS  Google Scholar 

  62. Kocsy, G., Galiba, G. and Brunold, C. (2001) Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol. Plant 113, 158-164.

    Article  CAS  PubMed  Google Scholar 

  63. Ruiz, J.M. and Blumwald, E. (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214, 965-969.

    Article  CAS  PubMed  Google Scholar 

  64. Farmer, E.E. and Ryan, C.A. (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4, 129-134.

    Article  CAS  PubMed  Google Scholar 

  65. Buchanan-Wollaston, V. (1994) Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus. Identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol. 105, 839-846.

    Article  CAS  PubMed  Google Scholar 

  66. Choi, D., Kim, H.M., Yun, H.K., Park, J.A., Kim, W.T. and Bok, S.H. (1996) Molecular cloning of a metallthionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiol. 112, 353-359.

    Article  CAS  PubMed  Google Scholar 

  67. Kramer, U., Cotter-Howells, J.D., Charnock, J.M., Baker, A.J.M. and Smith, J.A.C. (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379, 635-638.

    Article  CAS  Google Scholar 

  68. Moffat, A.S. (1995) Plants proving their worth in toxic metal cleanup. Science. 269, 302-303.

    Article  CAS  PubMed  Google Scholar 

  69. Lin, Z.Q., Schemenauer, R.S., Cervinka, V., Zayed, A.M., Lee, A. and Terry, N. (2000) Selenium volatilization from a soil-plant system for the remediation of contaminated water and soil in the San Joaquin Valley. J. Environ. Qual. 29, 1048-1056.

    CAS  Google Scholar 

  70. Meagher, R. B. (2000) Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3, 153-162.

    Article  CAS  PubMed  Google Scholar 

  71. Greenland, A., Bell, P., Hart, C., Jepson, I., Nevshemal, T. and Wright, S. (1998) 71Symp. Soc. Exp. Biol. 51, 141.

    CAS  Google Scholar 

  72. Daniell, H., Muthukumar, B. and Lee, S.B. (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr. Genet. 39, 109-116.

    Article  CAS  PubMed  Google Scholar 

  73. Tepperman, J.M. and Dunsmuir, P. (1990) Transformed plants with elevated level of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol. Biol. 14, 501-511

    Article  CAS  PubMed  Google Scholar 

  74. Thomas, J.C., Davies, E.C., Malick, F.K., Endreszl, C., Williams, C.R., Abbas, M., Petrella, S., Swisher, K., Perron, M., Edwards, R., Osenkowski, P., Urbanczyk, N., Wiesend, W.N. and Murray, K.S. (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol. Prog. 19, 273-280.

    Article  CAS  PubMed  Google Scholar 

  75. Buchanan-Wollaston, V. (1994) Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus. Identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol. 105, 839-846.

    Article  CAS  PubMed  Google Scholar 

  76. Pellegineschi, A., Reynolds, M., Pacheco, M., Brito, R.M., Almeraya, R., Yamaguchi-Shinozaki, K. and Hoisington, D. (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47, 493-500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

LEDUC, D.L., TERRY, N. (2006). Genetic engineering stress tolerant plants for phytoremeditation. In: RAI, A.K., TAKABE, T. (eds) Abiotic stress tolerance in plants. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4389-9_8

Download citation

Publish with us

Policies and ethics