Skip to main content

Nitric oxide research in agriculture: bridging the plant and bacterial realms

  • Chapter
Abiotic stress tolerance in plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R.D., Webb, R.P. and Schake, S.A. (1997) Use of transgenic plants to study antioxidant defenses. Free Radical Biol. Med. 23, 473-479.

    CAS  Google Scholar 

  2. Kim, S., Kang, J.Y., Cho, D.I., Park, J.H. and Kim, S.Y. (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 40, 75-87.

    PubMed  CAS  Google Scholar 

  3. Ohara, K., Kokado, Y., Yamamoto, H., Sato, F. and Yazaki, K. (2004) Engineering of ubiquinone biosynthesis using the yeast coq2 gene confers oxidative stress tolerance in transgenic tobacco. Plant J. 40, 734-743.

    PubMed  CAS  Google Scholar 

  4. Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Carravieri, S. and Soave, C. (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J. 38, 940-953.

    PubMed  CAS  Google Scholar 

  5. Niggeweg, R., Michael, A.J. and Martin, C. (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat. Biotechnol. 22, 746-754.

    PubMed  CAS  Google Scholar 

  6. Yamasaki, H. (2005) The NO world for plants: achieving balance in an open system. Plant Cell Environ. 28, 78-84.

    CAS  Google Scholar 

  7. Selye, H. (1950) Stress and the general adaptation syndrome. Brit. Med. J. 4667, 1383-1392.

    Google Scholar 

  8. Selye, H. (1956) What is stress? Metabolism 5, 525-530.

    PubMed  CAS  Google Scholar 

  9. Selye, H. (1936) A syndrome produced by diverse nocuous agents. Nature 138, 32.

    Google Scholar 

  10. Selye, H. (1946) The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol. 6, 117-230.

    CAS  Google Scholar 

  11. Yamasaki, H. and Sakihama, Y. (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett. 468, 89-92.

    PubMed  CAS  Google Scholar 

  12. Westwood, M.N. (1993) Temperate-zone pomology: physiology and culture, Timber Press.

    Google Scholar 

  13. Mazzola, M. (1997) Identification and pathogenicity of Rhizoctonia spp. isolated from apple roots and orchard soils. Phytopathology 87, 582-587.

    PubMed  CAS  Google Scholar 

  14. Mazzola, M. (1998) Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 88, 930-938.

    PubMed  CAS  Google Scholar 

  15. Subbarao, K.V.(2002) Introduction: Methyl bromide alternatives-meeting the deadlines. Phytopathology 92, 1334-1336.

    PubMed  Google Scholar 

  16. Delledonne, M., Xia, Y., Dixon, R.A. and Lamb, C. (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585-588.

    PubMed  CAS  Google Scholar 

  17. Delledonne, M., Zeier, J., Marocco, A. and Lamb, C. (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Nat. Acad. Sci. USA 98, 13454-13459.

    PubMed  CAS  Google Scholar 

  18. Durner, J., Wendehenne, D. and Klessig, D.F. (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Nat. Acad. Sci. USA 95, 10328-10333.

    PubMed  CAS  Google Scholar 

  19. Ponce de León, I., Sanz, A., Hamberg, M. and Castresana, C. (2002) Involvement of the Arabidopsis α-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. Plant J. 29, 61-72.

    Google Scholar 

  20. Zeier, J., Delledonne, M., Mishina, T., Severi, E., Sonoda, M. and Lamb, C. (2004) Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiol. 136, 2875-2886.

    PubMed  CAS  Google Scholar 

  21. Beligni, M.V. and Lamattina, L. (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ. 24, 267-278.

    CAS  Google Scholar 

  22. Stohr, C. and Ullrich, W.R. (2002) Generation and possible roles of NO in plant roots and their apoplastic space. J. Exp. Bot. 53, 2293-2303.

    PubMed  CAS  Google Scholar 

  23. Hérouart, D., Baudouin, E., Frendo, P., Harrison, J., Santos, R., Jamet, A., Van De Sype, G., Touati, D. and Puppo A., (2002) Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume-Rhizobium symbiosis? Plant Physiol. Biochem. 40, 619-624.

    Google Scholar 

  24. Guo, F.Q., Okamoto, M. and Crawford, N.M. (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302, 100-103.

    PubMed  CAS  Google Scholar 

  25. Costa, H., Gallego, S.M. and Tomaro, M.L. (2002) Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci. 162, 939-945.

    CAS  Google Scholar 

  26. Dordas, C., Rivoal, J. and Hill, R.D. (2003) Plant haemoglobins, nitric oxide and hypoxic stress. Ann. Bot. 91 (SPEC. ISS. JAN.), 173-178.

    PubMed  CAS  Google Scholar 

  27. Dat, J.F., Capelli, N., Folzer, H., Bourgeade, P. and Badot, P.M. (2004) Sensing and signalling during plant flooding. Plant Physiol. Biochem. 42, 273-282.

    PubMed  CAS  Google Scholar 

  28. Mazzola, M. and Mullinix, K. (2005) Comparative field efficacy of measures containing Brassica napus seed meal or green manure for the management of apple replant disease. Plant Dis. 89, In Press.

    Google Scholar 

  29. Cohen, M.F. and Mazzola, M. (2004) A reason to be optimistic about biodiesel: seed meal as a valuable soil amendment. Trends Biotechnol. 22, 211-212.

    PubMed  CAS  Google Scholar 

  30. Cohen, M.F., Yamasaki, H. and Mazzola, M. (2005) Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol. Biochem. 37, 1215-1227.

    CAS  Google Scholar 

  31. Mazzola, M., Granatstein, D.M., Elfving, D.C. and Mullinix, K. (2001) Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology 91, 673-679.

    PubMed  CAS  Google Scholar 

  32. Taechowisan, T. Peberdy, J.F. and Lumyong, S. (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J. Microbiol. Biotechnol. 19, 381-385.

    CAS  Google Scholar 

  33. Coombs, J.T. and Franco, C.M.M. (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl. Envrion. Microbiol. 69, 5603-5608.

    CAS  Google Scholar 

  34. Kortemaa, H., Rita, H., Haahtela, K. and Smolander, A. (1994) Root-colonization ability of antagonistic Streptomyces griseovirdis. Plant Soil 163, 77-83.

    Google Scholar 

  35. Tokala, R.K., Strap, J.L., Jung, C.M., Crawford, D.L., Salove, M.H., Deobald, L.A., Bailey, J.F. and Morra, M.J. (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl. Environ. Microbiol. 68, 2161-2171.

    PubMed  CAS  Google Scholar 

  36. Cohen, M.F. and Mazzola, M. (2005) Suppression of Rhizoctonia root rot by Streptomyces in Brassica napus seed meal-amended soil. In American Phytopathological Society Annual Meeting Phytopathology 95:S20.

    Google Scholar 

  37. Mazzola, M., Cohen, M.F. and Fazio, G. (2004) Impact of soybean and rapeseed seed meal on microbial populations and growth of apple in replant orchard soils. Phytopathology 94, S68.

    Google Scholar 

  38. Wiggins, B.E. and Kinkel, L.L. (2005) Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous Streptomycetes. Phytopathology 95, 178-185.

    PubMed  CAS  Google Scholar 

  39. Crawford, D.L., Lynch, J.M., Whipps, J.M. and Ousley, M,A, (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl. Envrion. Microbiol. 59, 3899-3905.

    CAS  Google Scholar 

  40. Yuan, W.M. and Crawford, D.L. (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Envrion. Microbiol. 61, 3119-3128.

    CAS  Google Scholar 

  41. Lahdenpera, M.-L., Simon, E. and Uoti, J. (1991) Mycostop - a novel biofungicide based on Streptomyces bacteria. In Biotic Interactions and Soil-Borne Ddiseases (Beemster, A.B.R., Bollen, G.J., Gerlagh, M., Ruissen, M.A., Schippers, B. and Tempel, A. eds.), pp. 253-263, Elsevier.

    Google Scholar 

  42. Shimizu, M., Furumai, T., Igarashi, Y., Onaka, H., Nishimura, T., Yoshida, R. and, Kunoh, H. (2001) Association of induced disease resistance of rhododendron seedlings with inoculation of Streptomyces sp. R-5 and treatment with actinomycin D and amphotericin B to the tissue-culture medium. J. Antibio. 54, 501-505.

    CAS  Google Scholar 

  43. Coombs, J.T., Michelsen, P.P. and Franco, C.M.M. (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol. Control 29, 359-366.

    Google Scholar 

  44. Igarashi, Y., Ogawa, M., Sato, Y., Saito, N., Yoshida, R., Kunoh, H., Onaka, H. and Furumai, T. (2000) Fistupyrone, a novel inhibitor of the infection of Chinese Cabbage by Alternaria brassicicola, from Streptomyces sp. TP-A0569. J. Antibio. 53, 1117-1122.

    CAS  Google Scholar 

  45. Tokala, R.K. and Crawford, D.L. (2005) Streptomyces promote nitrogen fixation in legumes by aiding in nodular assimlation of iron. (Personal communication).

    Google Scholar 

  46. Gregor, A.K., Klubek, B. and Varsa, E.C. (2003) Identification and use of actinomycetes for enhanced nodulation of soybean co-inoculated with Bradyrhizobium japonicum. Can. J. Microbiol. 49, 483-491.

    PubMed  CAS  Google Scholar 

  47. Tokala, R.K. (2004) Ph.D. Thesis. University of Idaho.

    Google Scholar 

  48. Kers, J.A., Wach, M.J., Krasnoff, S.B., Widom, J., Cameron, K.D., Bukhalid, R.A., Gibson, D.M., Crane, B.R. and Loria, R. (2004) Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature 429, 79-82.

    PubMed  CAS  Google Scholar 

  49. Graziano, M., Beligni, M.V. and Lamattina, L. (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol. 130, 1852-1859.

    PubMed  CAS  Google Scholar 

  50. Vanin, A.F., Svistunenko, D.A., Mikoyan, V.D., Serezhenkov, V.A., Fryer, M.J., Baker, N.R. and Cooper, C.E. (2004) Endogenous superoxide production and the nitrite/nitrate ratio control the concentration of bioavailable free nitric oxide in leaves. J. Biol. Chem. 279, 24100-24107.

    PubMed  CAS  Google Scholar 

  51. Graziano, M. and Lamattina, L. (2005) Nitric oxide and iron in plants: an emerging and converging story. Trends Plant Sci. 10, 4-8.

    PubMed  CAS  Google Scholar 

  52. Maldonado, M.T. and Price, N.M. (2000) Nitrate regulation of Fe reduction and transport by Fe-limited Thalassiosira oceanica. Limnol. Oceanogr. 45, 814-826.

    Article  CAS  Google Scholar 

  53. Castignetti, D. and Smarrelli, J.(1986) Siderophores, the iron nutrition of plants, and nitrate reductase. FEBS Lett. 209, 147-151.

    CAS  Google Scholar 

  54. Smarrelli, J., John and Castignetti, D. (1986) Iron acquisition by plants: the reduction of ferrisiderophores by higher plant NADH: Nitrate reductase. Biochim. Biophys. Acta. (BBA) - General Subjects 882, 337-342.

    CAS  Google Scholar 

  55. Rockel, P., Strube, F., Rockel, A., Wildt, J. and Kaiser, W.M. (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 53, 103-110.

    PubMed  CAS  Google Scholar 

  56. Sakihamam, Y., Nakamura, S. and Yamasaki, H. (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol. 43, 290-297.

    Google Scholar 

  57. Yamasaki, H. (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Phil. Trans. R. Soc. Lon. B 355, 1477-1488.

    PubMed  CAS  Google Scholar 

  58. Yamasaki, H., Sakihama,Y. and Takahashi, S. (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant. Sci. 4, 128-129.

    PubMed  Google Scholar 

  59. Murgia, I., Delledonne, M. and Soave, C. (2002) Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant Journal 30, 521-528.

    PubMed  CAS  Google Scholar 

  60. Murgia, I., de Pinto, M.C., Delledonne, M., Soave, C. and De Gara, L. (2004) Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. J. Plant Physiol. 161, 777-783.

    PubMed  CAS  Google Scholar 

  61. Harrison, P.M. and Arosio, P. (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta (BBA) - Bioenergetics 1275, 161-203.

    Google Scholar 

  62. Briat, J.F. and Lobreaux, S. (1997) Iron transport and storage in plants. Trends Plant Sci. 2, 187-193.

    Google Scholar 

  63. Ragland, M. and Theil, E.C. (1993) Ferritin (mRNA, protein) and iron concentrations during soybean nodule development. Plant. Mol. Biol. 21, 555-560.

    PubMed  CAS  Google Scholar 

  64. Matamoros, M.A., Baird, L.M., Escuredo, P.R., Dalton, D.A., Minchin, F.R., Iturbe-Ormaetxe, I., Rubio, M.C., Moran, J.F., Gordon, A.J. and Becana, M. (1999) Stress-Induced legume root nodule senescence. Physiological, biochemical, and structural alterations. Plant Physiol. 121, 97-112.

    PubMed  CAS  Google Scholar 

  65. Streeter, J.G. (1987) Carbohydrate, organic acid, and amino acid composition of bacteriods and cytosol from soybean nodules. Plant Physiol. 85, 768-773.

    PubMed  CAS  Google Scholar 

  66. Mathieu, C., Moreau, S., Frendo, P., Puppo, A. and Davies, M.J. (1998) Direct detection of radicals in intact soybean nodules: Presence of nitric oxide-leghemoglobin complexes. Free Radical Biol. Med. 24, 1242-1249.

    CAS  Google Scholar 

  67. Leshem, Y.Y., Wills, R.B.H. and Ku, V.V.V (1998) Evidence for the function of the free radical gas -nitric oxide (NO.) - as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol. Biochem. 36, 825-833.

    CAS  Google Scholar 

  68. Penmetsa, R.V. and Cook, D.R. (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275, 527-530.

    PubMed  CAS  Google Scholar 

  69. Ma, W., Guinel, F.C. and Glick, B.R.(2003) Rhizobium leguminosarum biovar viciae1- aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl. Environ. Microbiol. 69, 4396-4402.

    PubMed  CAS  Google Scholar 

  70. Ma, W., Charles, T.C. and Glick, B.R. (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl. Environ. Microbiol. 70, 5891-5897.

    PubMed  CAS  Google Scholar 

  71. Yuhashi, K., Ichikawa, N., Ezura, H., Akao, S., Minakawa, Y., Nukui, N., Yasuta, T. and Minamisawa, K. (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl. Environ. Microbiol. 66, 2658-2663.

    PubMed  CAS  Google Scholar 

  72. van Loon, L.C., Bakker, P.A.H.M., Pieterse, C.M.J. (1998) Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36, 453-483.

    PubMed  CAS  Google Scholar 

  73. Klessig, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E. and Silva, H. (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc. Nat. Acad. Sci. USA 97, 8849-8855.

    PubMed  CAS  Google Scholar 

  74. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P. and Durner, J. (2004) Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Nat. Acad. Sci. USA 101, 15811-15816.

    PubMed  CAS  Google Scholar 

  75. Travis, J. (2004) NO-making enzyme no more: Cell, PNAS papers retracted. Science 306, 960.

    PubMed  CAS  Google Scholar 

  76. Simons, B.H., Millenaar, F.F., Mulder, L., Van Loon, L.C. and Lambers, H. (1999) Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae pv tomato. Plant Physiol. 120, 529-538.

    PubMed  CAS  Google Scholar 

  77. Yamasaki, H., Shimoji, H., Ohshiro, Y. and Sakihama, Y. (2001) Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide 5, 261-270.

    PubMed  CAS  Google Scholar 

  78. Huang, X., von Rad, U. and Durner, J. (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215, 914-925.

    PubMed  CAS  Google Scholar 

  79. Marshall, E. (2004) Getting the noise out of gene arrays. Science 306, 630-631.

    PubMed  CAS  Google Scholar 

  80. Cohen, M.F., Sakihama, Y. and Yamasaki H. (2001) Roles of plant flavonoids in interactions with microbes: from protection against pathogens to the mediation of mutualism. Recent Res. Devel. Plant Physiol. 2, 157-173.

    CAS  Google Scholar 

  81. Gardner, P.R., Costantino, G. and Salzman, A.L. (1998) Constitutive and adaptive detoxification of nitric oxide in Escherichia coli. Role of nitric-oxide dioxygenase in the protection of aconitase. J. Biol. Chem. 273, 26528-26533.

    PubMed  CAS  Google Scholar 

  82. Favey, S., Labesse, G., Vouille, V. and Boccara, M. (1995) Flavohaemoglobin HmpX: a new pathogenicity determinant in Erwinia chrysanthemi strain 3937. Microbiology 141, 863-871.

    PubMed  CAS  Google Scholar 

  83. Bolwell, G.P. (1999) Role of active oxygen species and NO in plant defense responses. Curr. Opin. Plant Biol. 2, 287-294.

    PubMed  CAS  Google Scholar 

  84. John, G.S., Brot, N., Ruan, J., Erdjument-Bromage, H., Tempst, P., Weissbach, H. and Nathan, C. (2001) Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc. Nat. Acad. Sci. USA 98, 9901-9906.

    Google Scholar 

  85. Yamamoto, A., Katou, S., Yoshioka, H., Doke, N. and Kawakita, K. (2003) Nitrate reductase, a nitric oxide-producing enzyme: induction by pathogen signals. J. Gen. Plant Pathol. 69, 218-229.

    CAS  Google Scholar 

  86. Subramanian, B., Bansal, V.K. and Kav, N.N. (2005) Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans. J. Agric. Food Chem. 53, 313-324.

    PubMed  CAS  Google Scholar 

  87. Bethke, P.C., Badger, M.R. and Jones, R.L. (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16, 332-341.

    PubMed  CAS  Google Scholar 

  88. Sakihama, Y., Mano, J., Sano, S., Asada, K. and Yamasaki, H. (2000) Reduction of phenoxyl radicals mediated by monodehyroascorbate reductase. Biochem. Biophys. Res. Commun. 279, 949-954.

    PubMed  CAS  Google Scholar 

  89. Pignocchi, C. and Foyer, C.H. (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr. Opin. Plant Biol. 6, 379-389.

    PubMed  CAS  Google Scholar 

  90. Holland, M.A. and Polacco, J.C. (1994) PPFMs and other covert contaminants: Is there more to plant physiology than just plant? Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 197-209.

    CAS  Google Scholar 

  91. Quadt-Hallmann, A., Hallmann, J., Kloepper, J.W. and Mahaffee, W.F. (1997) Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43, 895-914.

    Google Scholar 

  92. Mundt, J.O. and Hinkle, N.F. (1976) Bacteria within ovules and seeds. Appl. Envrion. Microbiol. 32, 694-698.

    CAS  Google Scholar 

  93. Vandenkoornhuyse, P., Baldauf, S.L., Leyval, C., Straczek, J. and Young, J.P. (2002) Extensive fungal diversity in plant roots. Science 295, 2051.

    PubMed  Google Scholar 

  94. Cohen, M.F. and Yamasaki, H. (2003) Involvement of nitric oxide synthase in sucrose-enhanced hydrogen peroxide tolerance of Rhodococcus sp. strain APG1, a plant-colonizing bacterium. Nitric Oxide 9, 1-9.

    PubMed  CAS  Google Scholar 

  95. Demple, B. (2002) Signal transduction by nitric oxide in cellular stress responses. Mol. Cell. Biochem. 234, 11-18.

    PubMed  Google Scholar 

  96. Kim, S.O., Merchant, K., Nudelman, R., Beyer, W.F.J., Keng, T., DeAngelo, J., Hausladen, A. and Stamler, J.S. (2002) OxyR: A molecular code for redox-related signaling. Cell 109 , 383-396.

    PubMed  CAS  Google Scholar 

  97. Zemojtel, T., Penzkofer, T., Dandekar, T. and Schultz, J. (2004) A novel conserved family of nitric oxide synthase? Trends Biochem. Sci. 29, 224-226.

    PubMed  CAS  Google Scholar 

  98. Choi, W.S., Seo, D.W., Chang, M.S., Han, J.W., Hong, S.Y., Paik, W.K. and Lee, H.W. (1998) Methylesters of L-arginine and N-nitro-L-arginine induce nitric oxide synthase in Staphylococcus aureus. Biochem. Biophys. Res. Commun. 246, 431-435.

    PubMed  CAS  Google Scholar 

  99. Wach, M.J., Kers, J.A., Krasnoff, S.B., Loria, R. and Gibson, D.M. (2005) Nitric oxide synthase inhibitors and nitric oxide donors modulate the biosynthesis of thaxtomin A, a nitrated phytotoxin produced by Streptomyces spp. Nitric Oxide 12, 46-53.

    PubMed  CAS  Google Scholar 

  100. Godde, M. and Conrad, R. (2000) Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture. Biol. Fertil. Soils 32, 120-128.

    CAS  Google Scholar 

  101. Harrison, R. and Webb, J. (2001) A review of the effect of N fertilizer type on gaseous emissions. Adv. Agron. 73, 65-108.

    CAS  Google Scholar 

  102. Veldkamp, E. and Keller, M. (1997) Fertilizer-induced nitric oxide emissions from agricultural soils. Nutr. Cycl. Agroecosyst. 48, 69-77.

    CAS  Google Scholar 

  103. Jousset, S., Tabachow, R.M. and Peirce, J.J. (2001) Soil nitric oxide emissions from nitrification and denitrification. J. Environ. Eng.-ASCE 127, 322-328.

    CAS  Google Scholar 

  104. Dunfield, P.F. and Knowles, R. (1999) Nitrogen monoxide production and consumption in an organic soil. Biol. Fertil. Soils 30, 153-159.

    CAS  Google Scholar 

  105. Atlas, R.M. and Bartha, R.(1993) Microbial ecology: fundamental and applications, Benjamin/Cummings Inc.

    Google Scholar 

  106. Jetten, M.S.M. (2001) New pathways for ammonia conversion in soil and aquatic systems. Plant Soil 230, 9-19.

    CAS  Google Scholar 

  107. Whittaker, M., Bergmann, D., Arciero, D. and Hooper, A.B. (2000) Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochim. Biophys. Acta-Bioenerg. 1459, 346-355.

    CAS  Google Scholar 

  108. Huber, D.M., Watson, R.D. and Steiner, G.W (1965) Crop residues, nitrogen, and plant disease. Soil Sci. 100, 302-308.

    Google Scholar 

  109. Anderson, I.C., Poth, M., Homstead, J. and Burdige, D. (1993) A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Appl. Environ. Microbiol. 59, 3525-3533.

    PubMed  CAS  Google Scholar 

  110. Tsuruta, S., Takaya, N., Zhang, L., Shoun, H., Kimura, K., Hamamoto, M. and Nakase, T. (1998) Denitrification by yeasts and occurrence of cytochrome P450 nor in Trichosporon cutaneum. FEMS Microbiol. Lett. 168, 105-110.

    PubMed  CAS  Google Scholar 

  111. Takaya, N. (2002) Dissimilatory nitrate reduction metabolisms and their control in fungi. J. Biosci. Bioeng. 94, 506-510.

    PubMed  CAS  Google Scholar 

  112. Kozlov, A.V., Staniek, K. and Nohl, H. (1999) Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett. 454, 127-130.

    PubMed  CAS  Google Scholar 

  113. Tischner, R., Planchet, E. and Kaiser, W.M. (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett. 576, 151-155.

    PubMed  CAS  Google Scholar 

  114. Baldani, V.L.D. and Döbereiner, J. (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol. Biochem. 12, 433-439.

    Google Scholar 

  115. Zimmer, W., Roeben, K. and Bothe, H. (1988) An alternative explanation for plant growth promotion by bacteria of the genus Azospirillum. Planta 176, 333-342.

    CAS  Google Scholar 

  116. Schimana, J., Gebhardt, K., Holtzel, A., Schmid, D.G., Sussmuth, R., Muller, J., Pukall, R. and Fiedler, H.P. (2002) Arylomycins A and B, new biaryl-bridged lipopeptide antibiotics produced by Streptomyces sp Tu 6075 - I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 55, 565-570.

    PubMed  CAS  Google Scholar 

  117. Boles, B.R., Thoendel, M. and Singh, P.K. (2004) Self-generated diversity produces "insurance effects" in biofilm communities. Proc. Nat. Acad. Sci. USA 101, 16630-16635.

    PubMed  CAS  Google Scholar 

  118. Schmidt, I., Steenbakkers, P.J., op den Camp, H.J., Schmidt, K. and Jetten, M.S. (2004) Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J. Bacteriol. 186, 2781-2788.

    PubMed  CAS  Google Scholar 

  119. Zwart, K.B., Kuikman, K.B. and van Veen, J.A. (1994) Rhizosphere protozoa: Their significance in nutrient dynamics. In Soil protozoa (Darbyshire, J.F., ed.), pp. 209, CAB International

    Google Scholar 

  120. Herbst, R., Ott, C., Jacobs, T., Marti, T., Marciano-Cabral, F. and Leippe, M. (2002) Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. J. Biol. Chem. 277, 22353-22360

    PubMed  CAS  Google Scholar 

  121. Nathan, C. and Shiloh, M.U. (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Nat. Acad. Sci. USA 97, 8841-8848

    PubMed  CAS  Google Scholar 

  122. Golderer, G., Werner, E.R., Leitner, S., Grobner, P. and Werner-Felmayer G. (2001) Nitric oxide synthase is induced in sporulation of Physarum polycephalum. Genes Dev. 15, 1299-1309

    PubMed  CAS  Google Scholar 

  123. Tao YP, TP Misko TP, Howlett AC, Klein C (1997) Nitric oxide, an endogenous regulator of Dictyostelium discoideum differentiation. Development 124, 3587-3595

    PubMed  CAS  Google Scholar 

  124. Steven, J.N., Radhika, D. and John, T.H. (2003) Nitric oxide signalling in plants. New Phytol. 159, 11-35

    Google Scholar 

  125. Calabrese, E.J. and Baldwin, L.A. (2003) Toxicology rethinks its central belief. Nature 421, 691-692

    PubMed  CAS  Google Scholar 

  126. Castresana, C. and Saraste, M. (1995) Evolution of energetic metabolism: the respiration early hypothesis. Trends Biol. Sci. 20, 443-448

    CAS  Google Scholar 

  127. Saraste, M. and Castresana, J. (1994) Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett. 34, 1-4

    Google Scholar 

  128. Toffanin, A., Wu, Q., Maskus, M., Caselia, S., Abruna, H.D. and Shapleigh, J.P. (1996) Characterization of the gene encoding nitrite reductase and the physiological consequences of its expression in the nondenitrifying Rhizobium “hedysari” strain HCNT1. Appl. Environ. Microbiol. 62, 4019-4025

    PubMed  CAS  Google Scholar 

  129. Kaldorf, M., Linne von Berg, K.H., Meier, U., Servos, U. and Bothe, H. (1993) The reduction of nitrous oxide to dinitrogen by Escherichia coli. Arch. Microbiol. 160, 432-439

    PubMed  CAS  Google Scholar 

  130. Ji, X.B. and Hollocher, T.C. (1988) Reduction of nitrite to nitric oxide by enteric bacteria. Biochem. Biophys. Res. Commun. 157, 106-108

    PubMed  CAS  Google Scholar 

  131. Watmough, N.J., Butl, G., Cheesman, M.R., Moir, J.W., Richardson, D.J. and Spiro, S. (1999) Nitric oxide in bacteria: synthesis and consumption. Biochim. Biophys. Acta-Bioenerg. 1411, 456-474

    CAS  Google Scholar 

  132. Schuster, F.L. (2002) Cultivation of pathogenic and opportunistic free-living amebas. Clin. Microbiol. Rev. 15, 342-354

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

COHEN, M.F., MAZZOLA, M., YAMASAKI, H. (2006). Nitric oxide research in agriculture: bridging the plant and bacterial realms. In: RAI, A.K., TAKABE, T. (eds) Abiotic stress tolerance in plants. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4389-9_5

Download citation

Publish with us

Policies and ethics