Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 570))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertson, D.G. 2003. Profiling breast cancer by array CGH. Breast Cancer Res Treat. 78:289–98.

    Article  CAS  PubMed  Google Scholar 

  • Alt, F., R. Kellems, J.R. Bertino, and R.T. Schimke. 1978. Selective multiplications of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. Journal of Biological Chemistry. 253:1357–1370.

    CAS  PubMed  Google Scholar 

  • Arlt, M.F., A.M. Casper, and T.W. Glover. 2003. Common fragile sites. Cytogenet Genome Res. 100:92–100.

    Article  CAS  PubMed  Google Scholar 

  • Arlt, M.F., B. Xu, S.G. Durkin, A.M. Casper, M.B. Kastan, and T.W. Glover. 2004. BRCA1 is required for common-fragile-site stability via its G2/M checkpoint function. Mol Cell Biol. 24:6701–9.

    Article  CAS  PubMed  Google Scholar 

  • Artandi, S.E., S. Alson, M.K. Tietze, N.E. Sharpless, S. Ye, R.A. Greenberg, D.H. Castrillon, J.W. Horner, S.R. Weiler, R.D. Carrasco, and R.A. DePinho. 2002. Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc Natl Acad Sci U S A. 99:8191–6.

    Article  CAS  PubMed  Google Scholar 

  • Balaban-Mallenbaum, G., G. Grove, and F.W. Gilbert. 1981. The proposed origin of double minutes from homogeneously staining regions (HSR)-marker chromosomes in human neuroblastoma hybrid cell lines. Cancer Genet. Cytogenet. 2:339–348.

    Google Scholar 

  • Bassing, C.H., and F.W. Alt. 2004. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle. 3:149–53.

    CAS  PubMed  Google Scholar 

  • Bassing, C.H., H. Suh, D.O. Ferguson, K.F. Chua, J. Manis, M. Eckersdorff, M. Gleason, R. Bronson, C. Lee, and F.W. Alt. 2003. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumours. Cell. 114:359–70.

    Article  CAS  PubMed  Google Scholar 

  • Bernardino, J., F. Apiou, M. Gerbault-Seureau, B. Malfoy, and B. Dutrillaux. 1998. Characterization of recurrent homogeneously staining regions in 72 breast cancers. Genes Chromosomes and Cancer. 23:100–108.

    Article  CAS  PubMed  Google Scholar 

  • Biedler, J.L., and B.A. Spengler. 1976. Metaphase chromosome anomaly: association with drug resistance and cell-specific products. Science. 191:185–187.

    CAS  PubMed  Google Scholar 

  • Brison, O. 1993. Gene amplification and tumour progression. Biochim. Biophys. Acta. 1155:25–41.

    CAS  PubMed  Google Scholar 

  • Canute, G.W., S.L. Longo, J.A. Longo, M.M. Shetler, T.E. Coyle, J.A. Winfield, and P.J. Hahn. 1998. The hydroxyurea-induced loss of double-minute chromosomes containing amplified epidermal growth factor receptor genes reduces the tumorigenicity and growth of human glioblastoma multiforme. Neurosurgery. 42:609–16.

    CAS  PubMed  Google Scholar 

  • Carroll, S.M., M.L. DeRose, P. Gaudray, C.M. Moore, D.R. Needham-Vandevanter, D.D. Von Hoff, and G.M. Wahl. 1988. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol. Cell. Biol. 8:1525–1533.

    CAS  PubMed  Google Scholar 

  • Carroll, S.M., P. Gaudray, M.L. DeRose, J.F. Emery, J.L. Meinkoth, E. Nakkim, M. Subler, D.D. VonHoff, and G.M. Wahl. 1987. Characterization of an episome produced in hamster cells that amplify a transfected CAD gene at high frequency: functional evidence for a mammalian replication origin. Molecular and Cellular Biology. 7:1740–1750.

    CAS  PubMed  Google Scholar 

  • Casper, A.M., S.G. Durkin, M.F. Arlt, and T.W. Glover. 2004. Chromosomal Instability at Common Fragile Sites in Seckel Syndrome. Am J Hum Genet. 75.

    Google Scholar 

  • Casper, A.M., P. Nghiem, M.F. Arlt, and T.W. Glover. 2002. ATR regulates fragile site stability. Cell. 111:779–89.

    Article  CAS  PubMed  Google Scholar 

  • Celeste, A., S. Difilippantonio, M.J. Difilippantonio, O. Fernandez-Capetillo, D.R. Pilch, O.A. Sedelnikova, M. Eckhaus, T. Ried, W.M. Bonner, and A. Nussenzweig. 2003. H2AX haploinsufficiency modifies genomic stability and tumour susceptibility. Cell. 114:371–83.

    Article  CAS  PubMed  Google Scholar 

  • Cha, R.S., and N. Kleckner. 2002. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science. 297:602–6.

    Article  CAS  PubMed  Google Scholar 

  • Chernova, O.B., M.V. Chernov, Y. Ishizaka, M.L. Agarwal, and G.R. Stark. 1998. MYC abrogates p53-mediated cell cycle arrest in N-(phosphonacetyl)-L-aspartate-treated cells, permitting CAD gene amplification. Mol Cell Biol. 18:536–45.

    CAS  PubMed  Google Scholar 

  • Chin, K., C.O. de Solorzano, D. Knowles, A. Jones, W. Chou, E.G. Rodriguez, W.L. Kuo, B.M. Ljung, K. Chew, K. Myambo, M. Miranda, S. Krig, J. Garbe, M. Stampfer, P. Yaswen, J.W. Gray, and S.J. Lockett. 2004. In situ analyses of genome instability in breast cancer. Nat Genet. 36:984–8.

    Article  CAS  PubMed  Google Scholar 

  • Ciullo, M., M.A. Debily, L. Rozier, M. Autiero, A. Billault, V. Mayau, S. El Marhomy, J. Guardiola, A. Bernheim, P. Coullin, D. Piatier-Tonneau, and M. Debatisse. 2002. Initiation of the breakage-fusion-bridge mechanism through common fragile site activation in human breast cancer cells: the model of PIP gene duplication from a break at FRA7I. Hum Mol Genet. 11:2887–94.

    Article  CAS  PubMed  Google Scholar 

  • Coquelle, A., E. Pipiras, F. Toledo, G. Buttin, and M. Debatisse. 1997. Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell. 89:215–25.

    Article  CAS  PubMed  Google Scholar 

  • Coquelle, A., L. Rozier, B. Dutrillaux, and M. Debatisse. 2002. Induction of multiple double-strand breaks within an hsr by meganucleaseI-SceI expression or fragile site activation leads to formation of double minutes and other chromosomal rearrangements. Oncogene. 21:7671–9.

    Article  CAS  PubMed  Google Scholar 

  • Coquelle, A., F. Toledo, S. Stern, A. Bieth, and M. Debatisse. 1998. A new role for hypoxia in tumour progression: induction of fragile sites triggering genomic rearrangements and formation of complex DMs and HSRs. Mol. Cell. 2:259–265.

    Article  CAS  PubMed  Google Scholar 

  • Corvi, R., L. Savelyeva, L. Amler, R. Handgretinger, and M. Schwab. 1995. Cytogenetic evolution of MYCN and MDM2 amplification in the neuroblastoma LS tumour and its cell line. Eur. J. Cancer. 31A:520–3.

    CAS  PubMed  Google Scholar 

  • Cowell, J.K. 1982. Double minutes and homogeneously staining regions: gene amplification in mammalian cells. Ann. Rev. Genet. 16:21–59.

    CAS  PubMed  Google Scholar 

  • Deng, Z., L. Lezina, C.J. Chen, S. Shtivelband, W. So, and P.M. Lieberman. 2002. Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell. 9:493–503.

    Article  CAS  PubMed  Google Scholar 

  • der-Sarkissian, H., S. Bacchetti, L. Cazes, and J.A. Londono-Vallejo. 2004. The shortest telomeres drive karyotype evolution in transformed cells. Oncogene. 23:1221–8.

    Article  CAS  PubMed  Google Scholar 

  • Difilippantonio, M.J., S. Petersen, H.T. Chen, R. Johnson, M. Jasin, R. Kanaar, T. Ried, and A. Nussenzweig. 2002. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med. 196:469–80.

    Article  CAS  PubMed  Google Scholar 

  • Dujon, B. 1989. Group I introns as mobile genetic elements: facts and mechanistic speculations-a review. Gene. 82:91–114.

    CAS  PubMed  Google Scholar 

  • Fernandez-Capetillo, O., A. Celeste, and A. Nussenzweig. 2003. Focusing on foci: H2AX and the recruitment of DNA damage response factors. Cell Cycle. 2:426–7.

    CAS  PubMed  Google Scholar 

  • Fukumoto, M., A. Suzuki, J. Inazawa, T. Yoshimura, S. Arao, T. Takahashi, H. Nomura, and H. Hiai. 1993. Chromosomal location and structure of amplicons in two human cell lines with coamplification of c-myc and Ki-ras oncogenes. Somatic Cell Mol. Genet. 19:21–28.

    CAS  PubMed  Google Scholar 

  • Gisselsson, D. 2003. Chromosome instability in cancer: how, when, and why? Adv Cancer Res. 87:1–29.

    CAS  PubMed  Google Scholar 

  • Gisselsson, D., L. Gorunova, M. Hoglund, N. Mandahl, and P. Elfving. 2004. Telomere shortening and mitotic dysfunction generate cytogenetic heterogeneity in a subgroup of renal cell carcinomas. Br J Cancer. 91:327–32.

    CAS  PubMed  Google Scholar 

  • Gisselsson, D., L. Pettersson, M. Hoglund, M. Heidenblad, L. Gorunova, J. Wiegant, F. Mertens, P. Dal Cin, F. Mitelman, and N. Mandahl. 2000. Chromosomal breakage-fusionbridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci U S A. 97:5357–62.

    Article  CAS  PubMed  Google Scholar 

  • Gladdy, R.A., M.D. Taylor, C.J. Williams, I. Grandal, J. Karaskova, J.A. Squire, J.T. Rutka, C.J. Guidos, and J.S. Danska. 2003. The RAG-1/2 endonuclease causes genomic instability and controls CNS complications of lymphoblastic leukemia in p53/Prkdcdeficient mice. Cancer Cell. 3:37–50.

    Article  CAS  PubMed  Google Scholar 

  • Graux, C., J. Cools, C. Melotte, H. Quentmeier, A. Ferrando, R. Levine, J.R. Vermeesch, M. Stul, B. Dutta, N. Boeckx, A. Bosly, P. Heimann, A. Uyttebroeck, N. Mentens, R. Somers, R.A. MacLeod, H.G. Drexler, A.T. Look, D.G. Gilliland, L. Michaux, P. Vandenberghe, I. Wlodarska, P. Marynen, and A. Hagemeijer. 2004. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 36:1084–9.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, E.M., M.J. Dorie, and A.J. Giaccia. 2004. Inhibition of ATR leads to increased sensitivity to hypoxia/reoxygenation. Cancer Res. 64:6556–62.

    Article  CAS  PubMed  Google Scholar 

  • Hellman, A., A. Rahat, S.W. Scherer, A. Darvasi, L.C. Tsui, and B. Kerem. 2000. Replication delay along FRA7H, a common fragile site on human chromosome 7, leads to chromosomal instability. Mol Cell Biol. 20:4420–7.

    Article  CAS  PubMed  Google Scholar 

  • Hellman, A., E. Zlotorynski, S.W. Scherer, J. Cheung, J.B. Vincent, D.I. Smith, L. Trakhtenbrot, and B. Kerem. 2002. A role for common fragile site induction in amplification of human oncogenes. Cancer Cell. 1:89–97.

    Article  CAS  PubMed  Google Scholar 

  • Hodgson, J.G., K. Chin, C. Collins, and J.W. Gray. 2003. Genome amplification of chromosome 20 in breast cancer. Breast Cancer Res Treat. 78:337–45.

    Article  CAS  PubMed  Google Scholar 

  • Hoglund, M., D. Gisselsson, G.B. Hansen, T. Sall, and F. Mitelman. 2003. Ovarian carcinoma develops through multiple modes of chromosomal evolution. Cancer Res. 63:3378–85.

    PubMed  Google Scholar 

  • Ilves, I., S. Kivi, and M. Ustav. 1999. Long-term episomal maintenance of bovine papillomavirus type 1 plasmids is determined by attachment to host chromosomes, which Is mediated by the viral E2 protein and its binding sites. J Virol. 73:4404–12.

    CAS  PubMed  Google Scholar 

  • Ishizaka, Y., M.V. Chernov, C.M. Burns, and G.R. Stark. 1995. p53-dependent growth arrest of REF52 cells containing newly amplified DNA. Proc Natl Acad Sci U S A. 92:3224–8.

    CAS  PubMed  Google Scholar 

  • Itoh, N., and N. Shimizu. 1998. DNA replication-dependent intranuclear relocation of double minute chromatin. J Cell Sci. 111 ( Pt 22):3275–85.

    CAS  PubMed  Google Scholar 

  • Jasin, M. 1996. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12:224–8.

    Article  CAS  PubMed  Google Scholar 

  • Jenke, A.C., I.M. Stehle, F. Herrmann, T. Eisenberger, A. Baiker, J. Bode, F.O. Fackelmayer, and H.J. Lipps. 2004. Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc Natl Acad Sci U S A. 101:11322–7.

    Article  CAS  PubMed  Google Scholar 

  • Kanda, T., M. Otter, and G.M. Wahl. 2001. Coupling of mitotic chromosome tethering and replication competence in epstein-barr virus-based plasmids. Mol Cell Biol. 21:3576–88.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, R.J., P.C. Brown, and R.T. Schimke. 1979. Amplified dihydrofolate reductase genes in unstable methotrexate-resistant cells are associated with double minute chromosomes. Proc. Natl. Acad. Sci. USA. 76:5669–5673.

    CAS  PubMed  Google Scholar 

  • Knuutila, S., A.M. Bjorkqvist, K. Autio, M. Tarkkanen, M. Wolf, O. Monni, J. Szymanska, M.L. Larramendy, J. Tapper, H. Pere, W. El-Rifai, S. Hemmer, V.M. Wasenius, V. Vidgren, and Y. Zhu. 1998. DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am. J. Pathol. 152:1107–23.

    CAS  PubMed  Google Scholar 

  • Kuo, M.T., R.C. Vyas, L.X. Jiang, and W.N. Hittelman. 1994. Chromosome breakage at a major fragile site associated with P-glycoprotein gene amplification in multidrug-resistant CHO cells. Mol. Cell. Biol. 14:5202–11.

    CAS  PubMed  Google Scholar 

  • Kuwahara, Y., C. Tanabe, T. Ikeuchi, K. Aoyagi, M. Nishigaki, H. Sakamoto, K. Hoshinaga, T. Yoshida, H. Sasaki, and M. Terada. 2004. Alternative mechanisms of gene amplification in human cancers. Genes Chromosomes Cancer. 41:125–32.

    Article  CAS  PubMed  Google Scholar 

  • Lafage, M., F. Pedeutour, S. Marchetto, J. Simonetti, M.T. Prosperi, P. Gaudray, and D. Birnbaum. 1992. Fusion and amplification of two originally non-syntenic chromosomal regions in a mammary carcinoma cell line. Genes Chromosomes and Cancer. 5:40–9.

    Article  CAS  PubMed  Google Scholar 

  • Leo, C., A.J. Giaccia, and N.C. Denko. 2004. The hypoxic tumour microenvironment and gene expression. Semin Radiat Oncol. 14:207–14.

    Article  PubMed  Google Scholar 

  • Lese, C.M., K.M. Rossie, B.N. Appel, J.K. Reddy, J.T. Johnson, E.N. Myers, and S.M. Gollin. 1995. Visualization of INT2 and HST1 amplification in oral squamous cell carcinomas. Genes Chromosomes Cancer. 12:288–95.

    CAS  PubMed  Google Scholar 

  • Livingstone, L.R., A. White, J. Sprouse, E. Livanos, T. Jacks, and T.D. Tlsty. 1992. Cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 70:923–935.

    Article  CAS  PubMed  Google Scholar 

  • Londono-Vallejo, J.A. 2004. Telomere length heterogeneity and chromosome instability. Cancer Lett. 212:135–44.

    CAS  PubMed  Google Scholar 

  • Luk, C.K., L. Veinot-Drebot, E. Tjan, and I.F. Tannock. 1990. Effect of transient hypoxia on sensitivity to doxorubicin in human and murine cell lines. J. Natl. Cancer Inst. 82:684–92.

    CAS  PubMed  Google Scholar 

  • Ma, C., S. Martin, B. Trask, and J.L. Hamlin. 1993. Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells. Genes Dev. 7:605–20.

    CAS  PubMed  Google Scholar 

  • Maser, R.S., and R.A. DePinho. 2004. Telomeres and the DNA damage response: why the fox is guarding the henhouse. DNA Repair (Amst). 3:979–88.

    CAS  Google Scholar 

  • Maurer, B.J., E. Lai, B.A. Hamkalo, L. Hood, and G. Attardi. 1987. Novel submicroscopic extrachromosomic elements containing amplified genes in human cells. Nature. 327:434–437.

    Article  CAS  PubMed  Google Scholar 

  • McClintock, B. 1951. Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol. 16:13–47.

    CAS  PubMed  Google Scholar 

  • Mondello, C., P. Rebuzzini, M. Dolzan, S. Edmonson, G.E. Taccioli, and E. Giulotto. 2001. Increased gene amplification in immortal rodent cells deficient for the DNA-dependent protein kinase catalytic subunit. Cancer Res. 61:4520–5.

    CAS  PubMed  Google Scholar 

  • Muleris, M., A. Almeida, M. Gerbault-Seureau, B. Malfoy, and B. Dutrillaux. 1995. Identification of amplified DNA sequences in breast cancer and their organization within homogeneously staining regions. Genes, Chromosomes & Cancer. 14:155–63.

    CAS  Google Scholar 

  • Nonet, G.H., S.M. Carroll, M.L. DeRose, and G.M. Wahl. 1993. Molecular dissection of an extrachromosomal amplicon reveals a circular structure consisting of an imperfect inverted duplication. Genomics. 15:543–58.

    Article  CAS  PubMed  Google Scholar 

  • O’Hagan, R.C., S. Chang, R.S. Maser, R. Mohan, S.E. Artandi, L. Chin, and R.A. DePinho. 2002. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell. 2:149–55.

    CAS  PubMed  Google Scholar 

  • O’sullivan, J.N., M.P. Bronner, T.A. Brentnall, J.C. Finley, W.T. Shen, S. Emerson, M.J. Emond, K.A. Gollahon, A.H. Moskovitz, D.A. Crispin, J.D. Potter, and P.S. Rabinovitch. 2002. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet. 32:280–4.

    CAS  PubMed  Google Scholar 

  • Okuno, Y., P.J. Hahn, and D.M. Gilbert. 2004. Structure of a palindromic amplicon junction implicates microhomology-mediated end joining as a mechanism of sister chromatid fusion during gene amplification. Nucleic Acids Res. 32:749–56.

    Article  CAS  PubMed  Google Scholar 

  • Ormandy, C.J., E.A. Musgrove, R. Hui, R.J. Daly, and R.L. Sutherland. 2003. Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res Treat. 78:323–35.

    Article  CAS  PubMed  Google Scholar 

  • Paulson, T.G., A. Almasan, L.L. Brody, and G.M. Wahl. 1998. Gene amplification in a p53-deficient cell line requires cell cycle progression under conditions that generate DNA breakage. Mol Cell Biol. 18:3089–100.

    CAS  PubMed  Google Scholar 

  • Pedeutour, F., R.F. Suijkerbuijk, A. Forus, J. Van Gaal, W. Van de Klundert, J.M. Coindre, G. Nicolo, F. Collin, U. Van Haelst, K. Huffermann, and et al. 1994. Complex composition and co-amplification of SAS and MDM2 in ring and giant rod marker chromosomes in well-differentiated liposarcoma. Genes Chromosomes Cancer. 10:85–94.

    CAS  PubMed  Google Scholar 

  • Pipiras, E., A. Coquelle, A. Bieth, and M. Debatisse. 1998. Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. EMBO J. 17:325–333.

    Article  CAS  PubMed  Google Scholar 

  • Popescu, N.C. 2003. Genetic alterations in cancer as a result of breakage at fragile sites. Cancer Lett. 192:1–17.

    Article  CAS  PubMed  Google Scholar 

  • Poupon, M.F., K.A. Smith, O.B. Chernova, C. Gilbert, and G.R. Stark. 1996. Inefficient growth arrest in response to dNTP starvation stimulates gene amplification through bridge-breakage-fusion cycles. Mol. Biol. Cell. 7:345–354.

    CAS  PubMed  Google Scholar 

  • Raymond, E., S. Faivre, G. Weiss, J. McGill, K. Davidson, E. Izbicka, J.G. Kuhn, C. Allred, G.M. Clark, and D.D. Von Hoff. 2001. Effects of hydroxyurea on extrachromosomal DNA in patients with advanced ovarian carcinomas. Clin Cancer Res. 7:1171–80.

    CAS  PubMed  Google Scholar 

  • Rice, G.C., C. Hoy, and R.T. Schimke. 1986. Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA. 83:5978–5982.

    CAS  PubMed  Google Scholar 

  • Richards, R.I. 2001. Fragile and unstable chromosomes in cancer: causes and consequences. Trends Genet. 17:339–45.

    Article  CAS  PubMed  Google Scholar 

  • Roelofs, H., E. Schuuring, J. Wiegant, R. Michalides, and M. Giphart-Gassler. 1993. Amplification of the 11q13 region in human carcinoma cell lines: a mechanistic view. Genes Chromosomes Cancer. 7:74–84.

    CAS  PubMed  Google Scholar 

  • Saunders, W.S., M. Shuster, X. Huang, B. Gharaibeh, A.H. Enyenihi, I. Petersen, and S.M. Gollin. 2000. Chromosomal instability and cytoskeletal defects in oral cancer cells. Proc Natl Acad Sci U S A. 97:303–8.

    CAS  PubMed  Google Scholar 

  • Schoenlein, P.V., J.T. Barrett, A. Kulharya, M.R. Dohn, A. Sanchez, D.Y. Hou, and J. McCoy. 2003. Radiation therapy depletes extrachromosomally amplified drug resistance genes and oncogenes from tumour cells via micronuclear capture of episomes and double minute chromosomes. Int J Radiat Oncol Biol Phys. 55:1051–65.

    Article  CAS  PubMed  Google Scholar 

  • Schwab, M. 1999. Oncogene amplification in solid tumours. Semin. cancer Biol. 9:319–325.

    Article  CAS  PubMed  Google Scholar 

  • Schwab, M. 2004. MYCN in neuronal tumours. Cancer Lett. 204:179–87.

    Article  CAS  PubMed  Google Scholar 

  • Schwab, M., and L.C. Amler. 1990. Amplification of cellular oncogenes: a predictor of clinical outcome in human cancer. Genes Chromosomes Cancer. 1:181–193.

    CAS  PubMed  Google Scholar 

  • Sharpless, N.E., D.O. Ferguson, R.C. O’Hagan, D.H. Castrillon, C. Lee, P.A. Farazi, S. Alson, J. Fleming, C.C. Morton, K. Frank, L. Chin, F.W. Alt, and R.A. DePinho. 2001. Impaired nonhomologous end-joining provokes soft tissue sarcomas harbouring chromosomal translocations, amplifications, and deletions. Mol Cell. 8:1187–96.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, N., T. Hashizume, K. Shingaki, and J.K. Kawamoto. 2003. Amplification of plasmids containing a mammalian replication initiation region is mediated by controllable conflict between replication and transcription. Cancer Res. 63:5281–90.

    CAS  PubMed  Google Scholar 

  • Shimizu, N., N. Itoh, H. Utiyama, and G.M. Wahl. 1998. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. 1998. 140:1307–1320.

    CAS  Google Scholar 

  • Shimizu, N., Y. Miura, Y. Sakamoto, and K. Tsutsui. 2001. Plasmids with a mammalian replication origin and a matrix attachment region initiate the event similar to gene amplification. Cancer Res. 61:6987–90.

    CAS  PubMed  Google Scholar 

  • Shuster, M.I., L. Han, M.M. Le Beau, E. Davis, M. Sawicki, C.M. Lese, N.H. Park, J. Colicelli, and S.M. Gollin. 2000. A consistent pattern of RIN1 rearrangements in oral squamous cell carcinoma cell lines supports a breakage-fusion-bridge cycle model for 11q13 amplification. Genes Chromosomes Cancer. 28:153–63.

    Article  CAS  PubMed  Google Scholar 

  • Sinclair, C.S., M. Rowley, A. Naderi, and F.J. Couch. 2003. The 17q23 amplicon and breast cancer. Breast Cancer Res Treat. 78:313–22.

    Article  CAS  PubMed  Google Scholar 

  • Singer, M.J., L.D. Mesner, C.L. Friedman, B.J. Trask, and J.L. Hamlin. 2000. Amplification of the human dihydrofolate reductase gene via double minutes is initiated by chromosome breaks. Proc Natl Acad Sci U S A. 97:7921–6.

    Article  CAS  PubMed  Google Scholar 

  • Smith, D.I., H. Huang, and L. Wang. 1998. Common fragile sites and cancer. International Journal of Oncology. 12:187–196.

    CAS  PubMed  Google Scholar 

  • Smith, K.A., P.A. Gorman, M.B. Stark, R.P. Groves, and G.R. Stark. 1990. Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells. Cell. 63:1219–1227.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K.A., M.B. Stark, P.A. Gorman, and G.R. Stark. 1992. Fusion near telomeres occur very early in the amplification of CAD genes in Syrian hamster cells. Proc. Natl. Acad. Sci. U.S.A. 89:5427–5431.

    CAS  PubMed  Google Scholar 

  • Stark, G.R., and G.M. Wahl. 1984. Gene amplification. Ann. Rev. Biochem. 53:447–491.

    CAS  PubMed  Google Scholar 

  • Storlazzi, C.T., T. Fioretos, K. Paulsson, B. Strombeck, C. Lassen, T. Ahlgren, G. Juliusson, F. Mitelman, M. Rocchi, and B. Johansson. 2004. Identification of a commonly amplified 4.3 Mb region with overexpression of C8FW, but not MYC in MYC-containing double minutes in myeloid malignancies. Hum Mol Genet. 13:1479–85.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland, R., E. Baker, and R.I. Richards. 1998. Fragile Sites Still Breaking. Trends in Genetics. 14:501–506.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, T., and N. Shimizu. 2000. Induced detachment of acentric chromatin from mitotic chromosomes leads to their cytoplasmic localization at G(1) and the micronucleation by lamin reorganization at S phase. J Cell Sci. 113 ( Pt 4):697–707.

    CAS  PubMed  Google Scholar 

  • Thomas, L., J. Stamberg, I. Gojo, Y. Ning, and A.P. Rapoport. 2004. Double minute chromosomes in monoblastic (M5) and myeloblastic (M2) acute myeloid leukemia: two case reports and a review of literature. Am J Hematol. 77:55–61.

    Article  PubMed  Google Scholar 

  • Toledo, F., G. Buttin, and M. Debatisse. 1993. The origin of chromosome rearrangements at early stages of AMPD2 gene amplification in Chinese hamster cells. Current Biol. 3:255–264.

    CAS  Google Scholar 

  • Toledo, F., D. LeRoscouet, G. Buttin, and M. Debatisse. 1992b. Co-amplified markers alternate in megabase long chromosomal inverted repeats and cluster independently in interphase nuclei at early steps of mammalian gene amplification. EMBO J. 11:2665–2673.

    CAS  PubMed  Google Scholar 

  • Toledo, F., K.A. Smith, G. Buttin, and M. Debatisse. 1992a. The evolution of the amplified adenylate-deaminase-2 domains in Chinese hamster cells suggests the sequential intervention of different mechanisms of DNA amplification. Mutation Res. 276:261–273.

    CAS  PubMed  Google Scholar 

  • Vogt, N., S.H. Lefevre, F. Apiou, A.M. Dutrillaux, A. Cor, P. Leuraud, M.F. Poupon, B. Dutrillaux, M. Debatisse, and B. Malfoy. 2004. Molecular structure of double-minute chromosomes bearing amplified copies of the epidermal growth factor receptor gene in gliomas. Proc Natl Acad Sci U S A. 101:11368–73.

    Article  CAS  PubMed  Google Scholar 

  • Wahl, G.M. 1989. The importance of circular DNA in mammalian gene amplification. Cancer Res. 49:1333–1340.

    CAS  PubMed  Google Scholar 

  • Windle, B., B.W. Draper, Y. Yin, S. O’Gorman, and G.M. Wahl. 1991. A central role for chromosome breakage in gene amplification, deletion formation and amplicon integration. Genes Dev. 5:160–174.

    CAS  PubMed  Google Scholar 

  • Windle, B.E., and G.M. Wahl. 1992. Molecular dissection of mammalian gene amplification: new mechanistic insights revealed by analyses of very early events. Mutat Res. 276:199–224.

    CAS  PubMed  Google Scholar 

  • Yin, Y., M.A. Tainsky, F.Z. Bischoff, L.C. Strong, and G.M. Wahl. 1992. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell. 70:937–948.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, C., K.D. Mills, D.O. Ferguson, C. Lee, J. Manis, J. Fleming, Y. Gao, C.C. Morton, and F.W. Alt. 2002. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell. 109:811–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Debatisse, M., Malfoy, B. (2005). Gene Amplification Mechanisms. In: Back, N., Cohen, I.R., Kritchevsky, D., Lajtha, A., Paoletti, R., Nigg, E.A. (eds) Genome Instability in Cancer Development. Advances in Experimental Medicine and Biology, vol 570. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3764-3_12

Download citation

Publish with us

Policies and ethics