Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, A.J. and Dawes, E.A. (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54, 450–472.

    PubMed  CAS  Google Scholar 

  • Babel, W., Ackermann, J.U. and Breuer, U. (2001) Physiology, regulation, and limits of the synthesis of poly(3HB), In: T. Scheper, W. Babel and A. Steinbüchel (eds.), Advances in Biochemical Engineering Biotechnology, Vol. 71: Biopolyesters. Springer, Berlin, pp. 125–157.

    Google Scholar 

  • Braunegg, G., Lefebvre, G. and Genser, K.F. (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J. Biotechnol. 65, 127–161.

    Article  PubMed  CAS  Google Scholar 

  • Chisti, Y. (1992) Build better industrial bioreactors. Chem. Eng. Prog. 88, 55–58.

    CAS  Google Scholar 

  • Doi, Y., Tamaki, A., Kunioka, M. and Soga, K. (1987) Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate, and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids. Macromol. Chem. Rapid Commun. 8, 631–635.

    CAS  Google Scholar 

  • Doi, Y., Tamaki, A., Kunioka, M. and Soga, K. (1988) Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric and pentanoic acids. Appl. Microbiol. Biotechnol. 28, 330–334.

    Article  CAS  Google Scholar 

  • Doi, Y., Segawa, A. and Kunioka, M. (1990) Biosynthesis and characterization of poly(3-hydroxybutyrateco-4-hydroxybutyrate) in Alcaligenes eutrophus. Int. J. Biol. Macromol. 12, 106–111.

    Article  PubMed  CAS  Google Scholar 

  • Doi, Y., Kitamura, S. and Abe, H. (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28, 4822–4828.

    Article  CAS  Google Scholar 

  • Doudoroff, M. and Stanier, R.Y. (1959) Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria. Nature 183, 1440–1442.

    PubMed  CAS  Google Scholar 

  • Fernandez-Castillo, R., Rodriguez-Valera, F., Gonzales-Ramos, J. and Ruiz-Berraquero, F. (1986) Accumulation of poly(β-hydroxybutyrate) by halobacteria. Appl. Environ. Microbiol. 51, 214–216.

    PubMed  CAS  Google Scholar 

  • Forsyth, W.G.C., Hayward, A.C. and Roberts, J.B. (1958) Occurrence of poly-β-hydroxybutyric acid in aerobic Gram-negative bacteria. Nature 182, 800–801.

    PubMed  CAS  Google Scholar 

  • Haywood, G.W., Anderson, A.J., Chu, L. and Dawes, E.A. (1988) Charaterization of two 3-ketothiolases in the polyhydroxyalkanoate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol. Lett. 70, 91–96.

    Google Scholar 

  • Hezayen, F.F., Rehm, B.H.A., Eberhardt, R. and Steinbüchel, A. (2000) Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl. Microbiol. Biotechnol. 54, 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Hezayen, F.F., Steinbüchel, A. and Rehm, B.H.A. (2002) Biochemical and enzymological properties of the polyhydroxybutyrate synthase from the extemely halophilic archaeon strain 56. Arch. Biochem. Biophys. 403, 284–291.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, P.A. (1988) Biologically produced (R)-3-hydroxyalkanoate polymers and copolymers, In: C.C. Basset (ed.), Developments in Crystalline Polymers-2. Elsevier, London, pp. 1–65.

    Google Scholar 

  • Karr, D.B., Waters, J.K., Suzuki, F. and Emerich, D.W. (1984) Enzymes of the poly-β-hydroxybutyrate and citric acid cycles of Rhizobium japonicum bacteroids. Plant Physiol. 75, 1158–1162.

    Article  CAS  PubMed  Google Scholar 

  • Kato, M., Bao, H.J., Kang, C.K., Fukui, T. and Doi, Y. (1996) Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Appl. Microbiol. Biotechnol. 45, 363–370.

    Article  CAS  Google Scholar 

  • Kim, Y.B. and Lenz, R.W. (2001) Polyesters from microorganisms, In: T. Scheper, W. Babel and A. Steinbüchel (eds.), Advances in Biochemical Engineering Biotechnology, Vol. 71: Biopolyesters. Springer, Berlin, pp. 51–79.

    Google Scholar 

  • Kirk, R.G. and Ginzburg, M. (1972) Ultrastructure of two species of Halobacterium. J. Ultrastruct. Res. 41, 80–94.

    Article  PubMed  CAS  Google Scholar 

  • Kunioka, M., Nakamura, Y. and Doi, Y. (1988) New bacterial copolyesters produced in Alcaligenes eutrophus from organic acids. Polym. Commun. 29, 174–176.

    CAS  Google Scholar 

  • Lee, S.Y. (1996a) Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49, 1–14.

    CAS  PubMed  Google Scholar 

  • Lee, S.Y. (1996b) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 14, 431–438.

    CAS  Google Scholar 

  • Lemoigne, M. (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull. Soc. Chim. Biol. 8, 770–782.

    CAS  Google Scholar 

  • Lemoigne, M. (1927) Microbial autolysis and the autolytic origin of β-hydroxybutyric acid. Ann. Inst. Pasteur 41, 148–165.

    CAS  Google Scholar 

  • Lillo, J.G. and Rodriguez-Valera, F. (1990) Effects of culture conditions on poly(β-hydroxybutyric) acid production by Haloferax mediterranei. Appl. Environ. Microbiol. 56, 2517–2521.

    PubMed  Google Scholar 

  • Madison, L.L. and Huisman, G.W. (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63, 21–53.

    PubMed  CAS  Google Scholar 

  • Margesin, R. and Schinner, F. (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73–83.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Cánovas, J., Quesada, E., Llamas, I. and Béjar, V. (2004) Halomonas ventosae sp. nov., a moderately halophilic, denitrifiying exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 54, 733–737.

    PubMed  Google Scholar 

  • Mata, J.A., Martinez-Cánovas, J., Quesada, E. and Béjar, V. (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. System. Appl. Microbiol. 25, 360–375.

    CAS  Google Scholar 

  • McDermott, T.R., Griffith, S.M., Vance, C.P. and Graham, P.H. (1989) Carbon metabolism in Bradyrhizobium japonicum bacteroids. FEMS Microbiol. Rev. 63, 327–340.

    Article  CAS  Google Scholar 

  • Nishioka, M., Nakai, K., Miyake, M., Asada, Y. and Taya, M. (2001) Production of the poly-β-hydroxyalkanoate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate-limited contidition. Biotechnol. Lett. 23, 1095–1099.

    Article  CAS  Google Scholar 

  • Park, J.O., Matsch, S. and Bohni, H. (2002) Effects of temperature and chloride concentration on pit initiation and early pit growth of stainless steel. J. Electrochem. Soc. 149, B34–B39.

    CAS  Google Scholar 

  • Preusting, H., Nijenhuis, A. and Witholt, B. (1990) Physical characteristics of poly(3-hydroxyalkanoates) and poly(3-hydroxyalkanoates) produced by Pseudomonas oleovorans grown on aliphatic hydrocarbons. Macromolecules 23, 4220–4224.

    Article  CAS  Google Scholar 

  • Quillaguamán, J., Delgado, O., Mattiasson, B. and Hatti-Kaul, R. (2004a) Poly(β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1. (submitted).

    Google Scholar 

  • Quillaguamán, J., Hashim, S., Bento, F., Mattiasson, B. and Hatti-Kaul, R. (2004b) Poly(β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J. Appl. Microbiol., in press.

    Google Scholar 

  • Quillaguamán, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M.T. and Delgado, O. (2004c) Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile bacterium isolated from soil around a Bolivian hypersaline lake. Int. J. Syst. Evol. Microbiol. 57, 721–725.

    Google Scholar 

  • Ramsay, B.A., Saracovan, I., Ramsay, J.A. and Marchessault, R.H. (1992) Effect of nitrogen limitation on long-side-chain poly-β-hydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl. Environ. Microbiol. 58, 744–746.

    PubMed  CAS  Google Scholar 

  • Reddy, C.S.K., Ghai, R. and Kalia, V. (2003) Polyhydroxyalkanoates: an overview. Biores. Technol. 87, 137–146.

    CAS  Google Scholar 

  • Rodriguez-Valera, F. and Lillo, J.A.G. (1992) Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiol. Rev. 103, 181–186.

    CAS  Google Scholar 

  • Scandola, M., Ceccorulli, G. and Doi, Y. (1990) Viscoelastic relaxations and thermal properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Int. J. Biol. Macromol. 12, 112–117.

    Article  PubMed  CAS  Google Scholar 

  • Slepecky, R.A. and Law, J.H. (1960) Synthesis and degradation of poly-β-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J. Bacteriol. 82, 37–42.

    Google Scholar 

  • Steinbüchel, A. and Füchtenbush, B. (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol. 16, 419–427.

    PubMed  Google Scholar 

  • Steinbüchel, A. and Valentin, H.E. (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128, 219–218.

    Article  Google Scholar 

  • Steinbüchel, A., Debzi, E., Marchessault, R.H. and Timm, A. (1993) Synthesis and production of poly(3-hydroxyvaleric acid) homopolyester by Chromobacterium violaceum. Appl. Microbiol. Biotechnol. 39, 443–449.

    Google Scholar 

  • Steinbüchel, A., Aerts, K., Babel, W., Folner, C., Leibergesell, M. and Wieczorek, R. (1995) Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can. J. Microbiol. 41(suppl. 1), 94–105.

    PubMed  Google Scholar 

  • Stevenson, L.H. and Socolofsky, M.D. (1966) Cyst formation and poly-β-hydroxybutyric acid accumulation in Azotobacter. J. Bacteriol. 91, 304–310.

    PubMed  CAS  Google Scholar 

  • Suzuki, T., Yamane, T. and Shimizu, S. (1986) Kinetics and effect of nitrogen source feeding on production of poly-β-hydroxybutyric acid by fed-batch culture. Appl. Microbiol. Biotechnol. 24, 366–369.

    CAS  Google Scholar 

  • Taguchi, S. and Doi, Y. (2004) Evolution of polyhydroxyalkanoate (PHA) production system by “enzyme evolution”: successful case studies of directed evolution. Macromol. Biosci. 4, 145–156.

    Article  CAS  Google Scholar 

  • Tsuge, T. (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J. Biosci. Bioeng. 94, 579–584.

    PubMed  CAS  Google Scholar 

  • Valentin, H.E. and Dennis, D. (1996) Metabolic pathway for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal integration of a kanamycin resistance gene. Appl. Environ. Microbiol. 62, 372–379.

    PubMed  CAS  Google Scholar 

  • Valentin, H.E., Broyles, D.L., Casagrande, L.A., Colburn, S.M., Creely, W.L., DeLaquil, P.A., Felton, H.M., Gonzalez, K.A., Houmiel, K.L., Lutke, K., Mahadeo, D.A., Mitsky, T.A., Padgette, S.R., Reiser, S.E., Slater, S., Stark, D.M., Stock, R.T., Stone, D.A., Taylor, N.B., Thorne, G.M., Tran, M. and Gruys, K.J. (1999) PHA production, from bacteria to plants. Int. J. Biol. Macromol. 25, 303–306.

    Article  PubMed  CAS  Google Scholar 

  • Ventosa, A., Nieto, J.J. and Oren, A. (1998) Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544.

    PubMed  CAS  Google Scholar 

  • Wallen, L.L. and Rohwedder, W.K. (1974) Poly-β-hydroxyalkanoate from activated sludge. Environ. Sci. Technol. 8, 576–579.

    Article  CAS  Google Scholar 

  • Wendlandt, K.D., Jechorek, M., Helm, J. and Stottmeister, U. (2001) Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J. Biotechnol. 86, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Zinn, M., Bernard, W. and Egli, T. (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 53, 5–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Quillaguaman, J., Mattiasson, B., Hatti-Kaul, R. (2005). Biopolyester Production: Halophilic Microorganisms as an Attractive Source. In: Gunde-Cimerman, N., Oren, A., Plemenitaš, A. (eds) Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3633-7_24

Download citation

Publish with us

Policies and ethics