Skip to main content

Osmoadaptation in Methanogenic Archaea: Recent Insights from a Genomic Perspective

  • Conference paper
Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakker, E.P. (1992) Cell K+ and K+ transport systems in prokaryotes, In: E.P. Bakker (ed.), Alkali Cation Transport Systems in Prokaryotes. CRC Press, Boca Raton, pp. 205–224.

    Google Scholar 

  • Becher, B., Müller, V. and Gottschalk, G. (1992) N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Gö1 is an Na+-translocating membrane protein. J. Bacteriol. 174, 7675–7660.

    Google Scholar 

  • Berrier, C., Coulombe, A., Szabó, I., Zoratti, M. and Ghazi A. (1992) Gadolinium inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur. J. Biochem. 206, 559–565.

    Article  PubMed  CAS  Google Scholar 

  • Bohnert, H.J. (1995) Adaptations to environmental stresses. The Plant Cell 7, 1099–1111.

    PubMed  CAS  Google Scholar 

  • Boone, D.R., Mathrani, I.M., Liu, Y.T., Menaia, J.A.G.F., Mah, R.A. and Boone, J.E. (1993) Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int. J. Syst. Bact. 43, 430–437.

    Google Scholar 

  • Brown, A.D. (1976) Microbial water stress. Bacteriol. Rev. 40, 803–846.

    PubMed  CAS  Google Scholar 

  • Ciulla, R., Clougherty, C., Belay, N., Krishnan, S., Zhou, C., Byrd, D. and Roberts, M.F. (1994) Halotolerance of Methanobacterium thermoautotrophicum ΔH and Marburg. J. Bacteriol. 176, 3177–3187.

    PubMed  CAS  Google Scholar 

  • Deppenmeier, U., Johann, A., Hartsch, T., Merkl, R., Schmitz, R.A., Martinez-Arias, R., Henne, A., Wiezer, A., Bäumer, S., Jacobi, C., Brüggemann, H., Lienard, T., Christmann, A., Bömeke, M., Steckel, S., Bhattacharyya, A., Lykidis, A., Overbeek, R., Klenk, H.-P., Gunsalus, R.P., Fritz, H.-J. and Gottschalk, G. (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol. 4, 453–461.

    PubMed  CAS  Google Scholar 

  • Hoffmann, M., Pflüger, K. and Müller, V. Regulation of Ota, a primary transporter for the compatible solute glycine betaine in the methanogenic archaeon Methanosarcina mazei Gö1. Submitted for publication.

    Google Scholar 

  • Kempf, B. and Bremer, E. (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170, 319–330.

    Article  PubMed  CAS  Google Scholar 

  • Kloda, A. and Martinac, B. (2001) Molecular identification of a mechanosensitive channel in Archaea. Biophys. J. 80, 229–240.

    Article  PubMed  CAS  Google Scholar 

  • Kornberg, A., Rao, N.N. and Ault-Riché, D. (1999) Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem. 68, 89–125.

    Article  PubMed  CAS  Google Scholar 

  • Lai, M.C., Sowers, K.R., Robertson, D.E., Roberts, M.F. and Gunsalus, R.P. (1991) Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173, 5352–5358.

    PubMed  CAS  Google Scholar 

  • Lai, M.C., Hong, T.Y. and Gunsalus, R.P. (2000) Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis. J. Bacteriol. 182, 5020–5024.

    PubMed  CAS  Google Scholar 

  • Levina, N., Tötemeyer, S., Stokes, N.R., Louis, P., Jonas, M.A. and Booth, I.R. (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737.

    Article  PubMed  CAS  Google Scholar 

  • Martin, D.D., Ciulla, R.A. and Roberts, M.F. (1999) Osmoadaptation in archaea. Appl. Environ. Microbiol. 65, 1815–1825.

    PubMed  CAS  Google Scholar 

  • Martin, D.D., Ciulla, R.A., Robinson, P.M. and Roberts, M.F. (2001) Switching osmolyte strategies: response of Methanococcus thermolithotrophicus to changes in external NaCl. Biochim. Biophys. Acta 1524, 1–10.

    PubMed  CAS  Google Scholar 

  • Oren, A. (1999) Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63, 334–348.

    PubMed  CAS  Google Scholar 

  • Oren, A., Heldal, M., Norland, S. and Galinski, E.A. (2002) Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6, 491–498.

    PubMed  CAS  Google Scholar 

  • Perski, H.J., Schönheit, P. and Thauer, R.K. (1982) Sodium dependence of methane formation in methanogenic bacteria. FEBS Lett. 143, 323–326.

    Article  CAS  Google Scholar 

  • Pflüger, K. and Müller, V. (2004) Transport of compatible solutes in extremophiles. J. Bioenerg. Biomembr. 36, 17–24.

    PubMed  Google Scholar 

  • Pflüger, K., Baumann, S., Gottschalk, G., Lin, W., Santos, H. and Müller, V. (2003) Lysine-2,3-aminomutase and β-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of Ne-acetyl-β-lysine and growth at high salinity. Appl. Environ. Microbiol. 69, 6047–6055.

    PubMed  Google Scholar 

  • Proctor, L.M., Lai, R. and Gunsalus, R.P. (1997) The methanogenic archaeon Methanosarcina thermophila TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. Appl. Environ. Microbiol. 63, 2252–2257.

    PubMed  CAS  Google Scholar 

  • Roberts, M.F. (2000) Osmoadaptation and osmoregulation in archaea. Front. Biosci. 5, 796–812.

    Google Scholar 

  • Roberts, M.F. (2004) Osmoadaptation and osmoregulation in archaea: update 2004. Front. Biosci. 9, 1999–2019.

    PubMed  CAS  Google Scholar 

  • Roberts, M.F., Lai, M.C. and Gunsalus, R.P. (1992) Biosynthetic pathways of the osmolytes Ne-acetyl-β-lysine, β-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses. J. Bacteriol. 174, 6688–6693.

    PubMed  CAS  Google Scholar 

  • Robertson, D.E., Noll, D. and Roberts, M.F. (1992) Free amino acid dynamics in marine methanogens-β-amino acids as compatible solutes. J. Biol. Chem. 267, 14893–14901.

    PubMed  CAS  Google Scholar 

  • Roeßler, M. and Müller, V. (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ. Microbiol. 3, 743–754.

    Google Scholar 

  • Roeßler, M., Pflüger, K., Flach, H., Lienard, T., Gottschalk, G. and Müller, V. (2002) Identification of a saltinduced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Gö1. Appl. Environ. Microbiol. 68, 2133–2139.

    Google Scholar 

  • Schiller, D., Kruse, D., Kneifel, H., Kramer, R. and Burkovski, A. (2000) Polyamine transport and role of potE in response to osmotic stress in Escherichia coli. J. Bacteriol. 182, 6247–6249.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura A., Hirokawa, K., Nakashima, K. and Mizuno, T. (1994) Signal-sensing mechanisms of the putative osmosensor KdpD in Escherichia coli. Mol. Microbiol. 14, 929–938.

    PubMed  CAS  Google Scholar 

  • Sowers, K.R., Robertson, D.E., Noll, D., Gunsalus, R.P. and Roberts, M.F. (1990) Nɛ-acetyl-β-lysine-an osmolyte synthesized by methanogenic archaebacteria. Proc. Natl. Acad. Sci. USA 87, 9083–9087.

    PubMed  CAS  Google Scholar 

  • Sowers, K.R. and Gunsalus, R.P. (1995) Halotolerance in Methanosarcina spp.: Role of Ne-acetyl-β-lysine, aglutamate, glycine betaine, and K+ as compatible solutes for osmotic adaptation. Appl. Environ. Microbiol. 61, 4382–4388.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Pflüger, K., Wieland, H., Müller, V. (2005). Osmoadaptation in Methanogenic Archaea: Recent Insights from a Genomic Perspective. In: Gunde-Cimerman, N., Oren, A., Plemenitaš, A. (eds) Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3633-7_16

Download citation

Publish with us

Policies and ethics