Skip to main content

Interactions of Arbuscular Mycorrhiza and Nitrogen-Fixing Symbiosis in Sustainable Agriculture

  • Chapter

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 4))

Conclusions

The great agricultural and environmental importance of legumes, plus the ability of their rhizosphere system is able to harbour symbionts and other associated microbes of great relevance to plant productivity, make legumes target crops in sustainable agriculture. Current developments in the ecology, physiology, biochemistry, molecular biology, and biotechnology of microbe-plant relationships have given new insights into understanding the formation and functioning of the tripartite arbuscular-mycorrhizal and nitrogen-fixing symbioses of legumes and their interactions with PGPR. Although the technology for the production of rhizobial and free-living PGPR is commercially available, the production of AM fungi inocula and the development of inoculation techniques have limited the manipulation of AM fungi. However, current biotechnology practices now allow the production of efficient AM-fungal inoculants. Therefore, an appropriate management of selected AM fungi, rhizobia, and PGPR is now an available technique for exploiting the benefits of these microorganisms in agriculture, horticulture, and in revegetation of degraded ecosystems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd-Alla, M. H., Omar, S. A., and Karanxha, S. (2000). The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl. Soil Ecol., 14, 191–200.

    Article  Google Scholar 

  • Altieri, M. A. (1994). Sustainable Agriculture. Encylopedia of Agriculture Science, 4, 239–247.

    Google Scholar 

  • Ames, R. N., and Bethlenfalvay, G. J. (1987). Mycorrhizal fungi and the integration of plant and soil nutrient dynamics. J. Plant Nutr., 10, 1313–1321.

    CAS  Google Scholar 

  • Andrade, G., de Leij, F. A. A. M., and Lynch, J. M. (1998). Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea. Letters in Appl. Microbiol., 26, 311–316.

    Google Scholar 

  • Asai, T. (1944). Die bedeutung der mikorrhiza für das pflanzenleben. Japanese J. Bot., 12, 359–408.

    Google Scholar 

  • Asimi, S., Gianinazzi-Pearson, V., and Gianinazzi, S. (1980). Influence of increasing soil-phosphorus levels on interactions between vesicular arbuscular mycorrhizae and Rhizobium in soybeans. Can. J. Bot., 58, 2200–2205.

    CAS  Google Scholar 

  • Atkinson, S., Berta, G., and Hooker, J. E. (1994). Impact of mycorrhizal colonisation on root architecture, root longevity and the formation of growth regulators. In S. Gianinazzi and H. Schüepp (Eds.), Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems (pp. 47–60). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.

    Google Scholar 

  • Azcón, R., El-Atrash, F., and Barea, J. M. (1988). Influence of mycorrhiza vs soluble phoshate on growth, nodulation, and N2 fixation (15N) in alfalfa under different levels of water potential. Biol. Fertil. Soils, 7, 28–31.

    Google Scholar 

  • Azcón, R., Rubio, R., and Barea, J. M. (1991). Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2 fixation (15N) and nutrition of Medicago sativa L. New Phytol., 117, 399–404.

    Google Scholar 

  • Azcón-Aguilar, C., Azcón, R., and Barea, J. M. (1979). Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature, 279, 325–327.

    Google Scholar 

  • Azcón-Aguilar, C., and Barea, J. M. (1992). Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In M. J. Allen (Ed.), Mycorrhizal Functioning. An Integrative Plant-Fungal Process Routledge (pp. 163–198). New York, NY: Chapman and Hall Inc.

    Google Scholar 

  • Azcón-Aguilar, C., and Barea, J. M. (1996). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens-An overview of the mechanisms involved. Mycorrhiza, 6, 457–464.

    Google Scholar 

  • Azcón-Aguilar, C., and Barea, J. M. (1997). Applying mycorrhiza biotechnology to horticulture, significance and potentials. Scientia Horticulturae, 68, 1–24.

    Google Scholar 

  • Azcón-Aguilar, C., Bago, B., and Barea, J. M. (1998). Saprophytic growth of arbuscular-mycorrhizal fungi. In B. Hock and A. Varma (Eds.), Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology (pp. 391–408). Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  • Azcón-Aguilar, C., Palenzuela, E. J., and Barea, J. M. (2000). Substrato para la producción de inóculos de hongos formadores de micorrizas. Patent no. 9901814, Spain, CSIC.

    Google Scholar 

  • Azcón-Aguilar, C., Jaizme-Vega, M. C., and Calvet, C. (2002). The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 187–197). Heidelberg, Germany: ALS Birkhäuser Verlag.

    Google Scholar 

  • Azcón-Aguilar, C., Palenzuela, J., Roldan, A., Bautista, S., Vallejo, R., and Barea, J. M. (2002). Analysis of the mycorrhizal potential in the rhizosphere of representative plant species from desertification-threatened Mediterranean shrublands. Appl. Soil Ecol., 21, 1–9.

    Google Scholar 

  • Bachmann, K. (1998). Species as units of diversity: An outdated concept. Theory Bioscience, 117, 213–230.

    Google Scholar 

  • Barea, J. M. (1991). Vesicular arbuscular mycorrhizae as modifiers of soil fertility. In B. A. Stewart (Ed.), Advances in Soil Science. Vol 15 (pp. 1–39). New York, NY: Springer-Verlag.

    Google Scholar 

  • Barea, J. M. (1997). Mycorrhiza/bacteria interactions on plant growth promotion. In A. Ogoshi, L. Kobayashi, Y. Homma, F. Kodama, N. Kondon and S. Akino (Eds.), Plant Growth-Promoting Rhizobacteria, Present Status and Future Prospects (pp. 150–158). Paris, France: OCDE.

    Google Scholar 

  • Barea, J. M. (2000). Rhizosphere and mycorrhiza of field crops. In J. P. Toutant, E. Balazs, E. Galante, J. M. Lynch, J. S. Schepers, D. Werner and P. A. Werry (Eds.), Biological Resource Management, Connecting Science and Policy (OECD) (pp. 110–125). Heidelberg, Germany: INRA, Editions and Springer.

    Google Scholar 

  • Barea, J. M., Azcón, R., and Azcón-Aguilar, C. (1989a). Time-course of N2-fixation (15 N)in the field by clover growing alone or in mixture with ryegrass to improve pasture productivity, and inoculated with vesicular-arbuscular mycorrhizal fungi. New Phytol., 112, 299–404.

    Google Scholar 

  • Barea, J. M., Azcón, R., and Azcón-Aguilar, C. (1992). Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing systems. In J. R. Norris, D. Read and A. Varma (Eds.), Methods in Microbiology. Vol 24. Techniques for the Study of Mycorrhizae (pp. 391–416). London, UK: Academic Press.

    Google Scholar 

  • Barea, J. M., Azcón, R., and Azcón-Aguilar, C. (1993). Mycorrhiza and crops. In I. Tommerup (Ed.), Advances in Plant Pathology. Vol. 9. Mycorrhiza, A synthesis (pp. 167–189). London, UK: Academic Press.

    Google Scholar 

  • Barea, J. M., Azcón, R., and Azcón-Aguilar, C. (2002a). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antoine van Leeuwenhoek, 81, 343–351.

    CAS  Google Scholar 

  • Barea, J. M., and Azcón-Aguilar, C. (1983). Mycorrhizas and their significance in nodulating nitrogen fixing plants. Adv. Agron., 36, 1–54.

    Google Scholar 

  • Barea, J. M., Azcón-Aguilar, C., and Azcón, R. (1987). Vesicular-arbuscular mycorrhiza improve both symbiotic N2-fixation and N uptake from soil as assessed with a 15N technique under field conditions. New Phytol., 106, 717–721.

    CAS  Google Scholar 

  • Barea, J. M., Azcón-Aguilar, C., and Azcón, R. (1997). Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In A. C. Grange and V. K. Brown (Eds.), Multitrophic Interactions in Terrestrial Systems (pp. 65–77). Cambridge, UK: Blackwell Science.

    Google Scholar 

  • Barea, J. M., El-Atrach, F., and Azcón, R. (1989b). Mycorrhiza and phosphate interactions as affecting plant development, N2 fixation, N-transfer and N uptake from soil in legume grass mixtures by using a 15N dilution technique. Soil Biol. Biochem., 21, 581–589.

    Article  Google Scholar 

  • Barea, J. M., Gryndler, M., Lemanceau, Ph., Schüepp, H., and Azcón, R. (2002b). The rhizosphere of mycorrhizal plants. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 1–18). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Barea, J. M., and Jeffries, P. (1995). Arbuscular mycorrhizas in sustainable soil plant systems. In A. Varma and B. Hock (Eds.), Mycorrhiza, Structure, Function, Molecular Biology and Biotechnology (pp. 521–559). Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  • Barea, J. M., Tobar, R. M., and Azcón-Aguilar, C. (1996). Effect of a genetically modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhizas, root morphology, nutrient uptake and biomass accumulation in Medicago sativa. New Phytol., 134, 361–369.

    Google Scholar 

  • Barea, J. M., Toro, M., Orozco, M. O., Campos, E., and Azcón, R. (2002c). The application of isotopic 32P and 15N-dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling in Agroecosystem, 63, 35–42.

    CAS  Google Scholar 

  • Bashan, Y. (1999). Interactions of Azospirillum spp. in soils: A review. Biology and Fertility of Soils, 29, 246–256.

    Article  CAS  Google Scholar 

  • Berta, G., Fusconi, A., and Hooker, J. E. (2002). Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 71–85). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Bethlenfalvay, G. J., Brown, M. S., and Stafford, A. E. (1985). Glycine-Glomus Rhizobium symbiosis. II. Antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol., 79, 1054–1058.

    CAS  Google Scholar 

  • Bethlenfalvay, G. J., and Linderman, R. G. (1992). Mycorrhizae in Sustainable Agriculture. SAS Special publication no 54 Madison, Wisconsin.

    Google Scholar 

  • Bhatia, N. P., Adholeya, A., and Sharma, A. (1998). Biomass production and changes in soil productivity during longterm cultivation of Prosopis juliflora (Swartz) DC inoculated with VA mycorrhiza and Rhizobium spp. in a semi-arid wasteland. Biol. Fertil. Soils, 26, 208–214.

    Article  CAS  Google Scholar 

  • Bianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P., and Perotto, S. (2001). Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur. J. Histochem., 45, 39–49.

    CAS  PubMed  Google Scholar 

  • Biró, B., Köves-Péchy, K., Vörös, I., Takács, T., Eggenberger, P., and Strasser, R. J. (2000). Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl. Soil Ecol., 15, 159–168.

    Google Scholar 

  • Blilou, I., Ocampo, J. A., and García-Garrido, J. M. (1999). Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid. J. Exp. Bot., 50, 1663–1668.

    Article  CAS  Google Scholar 

  • Bowen, G. D., and Rovira, A. D. (1999). The rhizosphere and its management to improve plant growth. Adv. Agron., 66, 1–102.

    Google Scholar 

  • Brown, M. S., and Bethlenfalvay, G. J. (1987). Glycine-Glomus-Rhizobium. 6. Photosynthesis in nodulated, mycorrhizal or N-fertilized and P-fertilized soybean plants. Plant Physiol., 85, 120–123.

    CAS  Google Scholar 

  • Brown, M. S., and Bethlenfalvay, G. J. (1988). The Glycine-Glomus-Rhizobium symbiosis. 7. Photosynthetic nutrient use efficiency in nodulated, mycorrhizal soybeans. Plant Physiol., 86, 1292–1297.

    CAS  Google Scholar 

  • Brundrett, M., Bougher, N., Dell, B., Gove, T., and Malajczuk, N. (1996). Working with Mycorrhizas in Forestry and Agriculture. Canberra, Australia: ACIAR.

    Google Scholar 

  • Danso, S. K. A. (1988). The use of 15N enriched fertilizers for estimating nitrogen fixation in grain and pasture legumes. In D. P. Beck and L. Materon (Eds.), Nitrogen Fixation by Legumes in Mediterranean Agriculture (pp. 345–358). ICARDA.

    Google Scholar 

  • Díaz, G., Azcón-Aguilar, C., and Honrubia, M. (1996). Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil, 180, 241–249.

    Google Scholar 

  • Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Vanderleyden, J., Dutto, P., Labandera-Gonzalez, C., Caballero-Mellado, J., Aguirre, J. F., Kapulnik, Y., Brener, S., Burdman, S., Kadouri, D., Sarig, S., and Okon, Y. (2001). Response of agronomically important crops to inoculation with Azospirillum. Aust. J. Plant Physiol., 28, 1–9.

    Google Scholar 

  • Duc, G. Trouvelot, A., Gianinazzi-Pearson, V., and Gianinazzi, S. (1989). First report of nonmycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L) and fababean (Vicia faba L). Plant Science, 60, 215–222.

    Google Scholar 

  • Dumas-Gaudot, E., Gollotte, A., Cordier, C., Gianinazzi, S., and Gianinazzi-Pearson, V. (2000). Modulation of host defence systems. In Y. Kapulnick and D. D. Douds, Jr. (Eds.), Arbuscular Mycorrhizas: Physiology and Functions (pp. 121–140). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Estaún, V., Camprubí, A., and Joner, E. J. (2002). Selecting arbuscular mycorrhizal fungi for field application.. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 249–259). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Feldman, F., and Grotkass, C. (2002). Directed inoculum production — shall we be able to design populations of arbuscular mycorrhizal fungi to achieve predictable symbiotic effectiveness?. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 261–296). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Ferrol, N., Barea, J. M., and Azcón-Aguilar, C. (2000). The plasma membrane H-ATPase genes family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr. Genet., 37, 112–118.

    Article  CAS  PubMed  Google Scholar 

  • Flores, M., Mavingui, P., Perret, X., Broughton, W. J., Romero, D., Hernández, G., Davila, G., and Palacios, R. (2000). Prediction, identification, and artificial selection of DNA rearrangements in Rhizobium: Toward a natural genomic design. Proc. Natl. Acad. Sci. USA, 97, 9138–9143.

    Article  CAS  PubMed  Google Scholar 

  • Francis, D. F., and Thornes, J. B. (1990). Matorral erosion and reclamation. Soil Degradation and Rehabilitation in Mediterranean Environmental Conditions. In J. Albaladejo, M. A. Stocking and E. Díaz (Eds.), Soil Degradation and Rehabilitation in Mediterranean Environmental Conditions (pp. 87–115). Murcia, Spain: CSIC.

    Google Scholar 

  • Franken, P., and Requena, N. (2001). Analysis of gene expression in arbuscular mycorrhizas: New approaches and challenges. New Phytol., 150, 517–523.

    Article  CAS  Google Scholar 

  • Galleguillos, C., Aguirre, C., Barea, J. M., and Azcón, R. (2000). Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci., 159, 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi, S., and Schüepp, H. (1994). Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Basel, Switzerland: ALS Birkhäuser Verlag.

    Google Scholar 

  • Gianinazzi, S., Schüepp, H., Barea, J. M., and Haselwandter, K. (2002). Mycorrhizal Technology in Agriculture, from Genes to Bioproducts. Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Gianinazzi-Pearson, V. (1997). Have common plant systems co-evolved in fungal and bacterial root symbioses? In A. Legocki, H. Bothe and A. Pühler (Eds.), Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture (pp. 322–324). Berlin and Heidelberg, Germany: Spinger-Verlag.

    Google Scholar 

  • Gianinazzi-Pearson, V., Dumas-Gaudot, E., Gollotte, A., Tahiri-Alaoui, A., and Gianinazzi, S. (1996). Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol., 133, 45–57.

    Google Scholar 

  • Giovannetti, M. (2000). Spore germination and pre-symbiotic mycelial growth. In Y. Kapulnik and D. D. Douds, Jr. (Eds.), Arbuscular Mycorrhizas: Physiology and Function (pp. 3–18). Dordrecht, The Netherlands: Kluwer Academic Publsihers.

    Google Scholar 

  • Goicoechea, N., Antolín, M. C., and Sánchez-Díaz, M. (1997). Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant Soil, 192, 261–268.

    Article  CAS  Google Scholar 

  • Goicoechea, N., Antolín, M. C., and Sánchez-Díaz, M. (2000). The role of plant size and nutrient concentrations in associations between Medicago and Rhizobium and/or Glomus. Biol. Plant., 43, 221–226.

    Google Scholar 

  • Goicoechea, N., Szalai, G., Antolín, M. C., Sánchez-Díaz, M., and Paldi, E. (1998). Influence of arbuscular Mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J. Plant Physiol., 153, 706–711.

    CAS  Google Scholar 

  • Gollotte, A., Brechenmacher, L., Weidmann, S., Franken, P., and Gianinazzi-Pearson, V. (2002). Plant genes involved in arbuscular mycorrhiza formation and functioning. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 87–102). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • González-Méndez, S. B. (1990). Ecofisiología y biotecnología de las micorrizas VA en leguminosas. Ph. D. Thesis. Universidad de Granada. Facultad de Ciencias (Sección de Biología).

    Google Scholar 

  • Graham, J. H., Hodge, N. C., and Morton, J. B. (1995). Fatty acid methyl ester profiles for characterization of Glomalean fungi and Endomycorrhizae. Appl. Environ. Microbiol., 61, 58–64.

    CAS  Google Scholar 

  • Harley, J. L., and Smith, S. E. (1983). Mycorrhizal Symbiosis. New York, NY: Academic Press.

    Google Scholar 

  • Harris, D., Pacovsky, R. S., and Paul, E. A. (1985). Carbon economy of soybean-Rhizobium-Glomus associations. New Phytol., 101, 427–440.

    CAS  Google Scholar 

  • Harrison, M. J., Liu, J., Dewbre, G. R., Blaylock, L. A., and Zhao, L. (2000). Toward an understanding of the development and functioning of an arbuscular mycorrhiza: Molecular and genetic approaches. In H. C. Weber, S. Imhof and D. Zeuske (Ed.), Proceedings of the Third International Congress on Symbiosis (pp. 84). Marburg, Germany.

    Google Scholar 

  • Hayman, D. S. (1986). Mycorrhizae of nitrogen-fixing legumes. MIRCEN Journal, 2, 121–145.

    Article  Google Scholar 

  • Haystead, A., Malajczuk, N., and Grove, T. S. (1988). Underground transfer of nitrogen between pasture plants infected with vesicular arbuscular mycorrhizal fungi. New Phytol., 108, 417–423.

    Google Scholar 

  • Herrera, M. A., Salamanca, C. P., and Barea, J. M. (1993). Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified mediterranean ecosystems. Appl. Environ. Microbiol., 59, 129–133.

    PubMed  Google Scholar 

  • Hirsch, A. M., and Kapulnik, Y. (1998). Signal transduction pathways in mycorrhizal associations: Comparisons with the Rhizobium-legume symbiosis. Fungal Genet. Biol., 23, 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Houngnandan, P., Sanginga, N., Woomer, P., Vanlauwe, B., and van Cleemput, O. (2000). Response of Mucuna pruriens to symbiotic nitrogen fixation by rhizobia following inoculation in farmers’ fields in the derived savanna of Benin. Biol. Fertil. Soils, 30, 558–565.

    Article  CAS  Google Scholar 

  • Janse, J. M. (1896). Les endophytes radicaux des quelques plantes Javanaises. Annales du Jardin Botanique Buitenzorg, 14, 53–212.

    Google Scholar 

  • Jeffries, P., and Barea, J. M. (2001). Arbuscular mycorrhiza-a key component of sustainable plant-soil ecosystems In B. Hock (Ed.), The Mycota. Vol. IX. Fungal Associations (pp. 95–113). Berlin and Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  • Jeffries, P., Craven-Griffiths, A., Barea, J. M., Levy, Y., and Dodd, J. C. (2002). Application of arbuscular mycorrhizal fungi in the revegetation of desertified Mediterranean ecosystem. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 151–174). Heidelberg, Germany: ALS, Birkhäuser Verlag.

    Google Scholar 

  • Jones, F. R. (1924). A mycorrhizal fungus in the roots of legumes and some other plant. Journal of Agriculture Research, 29, 459–470.

    Google Scholar 

  • Kapulnik, Y., and Douds, D. D. Jr. (2000). Arbuscular Mycorrhizas: Physiology and Function. Dordrecht, The Netherlands: Kluwer Academic Publsihers.

    Google Scholar 

  • Kennedy, A. C. (1998). The rhizosphere and spermosphere. In D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel and D. A. Zuberer (Eds.), Principles and Applications of Soil Microbiology (pp. 389–407). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Kennedy, A. C., and Smith, K. L. (1995). Soil microbial diversity and the sustainability of agricultural soils. Plant Soil, 170, 75–86.

    Article  CAS  Google Scholar 

  • Kloepper, J. W. (1994). Plant growth-promoting rhizobacteria (other systems). In Y. Okon (Ed.), Azospirillum / plant associations (pp. 111–118). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kloepper, J. W. (1996). Host specificity in microbe-microbe interactions. BioScience, 46, 406–409

    Google Scholar 

  • Kucey, R. M. N., and Paul, E. A. (1982). Carbon flow. photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L). Soil Biol. Biochem., 14, 407–412.

    Google Scholar 

  • Kumar, B. S. D., Berggren, I., and Martensson, A. M. (2001). Potential for improving pea production by co-inoculation with fluorescent Pseudomonas and Rhizobium. Plant Soil, 229, 25–34.

    CAS  Google Scholar 

  • Lesueur, D., Ingleby, K., Odee, D., Chamberlain, J., Wilson, J., Manga, T. T., Sarrailh, J. M., and Pottinger, A. (2001). Improvement of forage production in Calliandra calothyrsus: Methodology for the identification of an effective inoculum containing Rhizobium strains and arbuscular mycorrhizal isolates. J. Biotechnol., 91, 269–282.

    Article  CAS  PubMed  Google Scholar 

  • Leyval, C., Joner, E. J., delVal, C., and Haselwandter, K. (2002). Potential or arbuscular mycorrhizal fungi for bioremediation. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 175–186). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Linderman, R. G. (1994). Role of VAM fungi in biocontrol. In F. L. Pfleger and R. G. Linderman (Eds.), Mycorrhizae and Plant Health (pp. 1–25). St Paul, MN: APS Press.

    Google Scholar 

  • Long, S. R. (2001). Genes and signals in the Rhizobium-legume symbiosis. Plant Physiology, 125, 69–72.

    CAS  PubMed  Google Scholar 

  • López-Sánchez, M. E., Díaz, G., and Honrubia, M. (1992). Influence of vesicular-arbuscular mycorrhizal infection and P addition on growth and P nutrition of Anthyllis cytisoides L. and Brachypodium retusum (Pers.) Beauv. Mycorrhiza, 2, 41–45.

    Google Scholar 

  • Madan, R., Pankhurst, C., Hawke, B., and Smith, S. (2002). Use of fatty acids for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol. Biochem., 34, 125–128.

    Article  CAS  Google Scholar 

  • Miller, R. M., and Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In Y. Kapulnik and D. D. Douds, Jr. (Eds.), Arbuscular mycorrhizas: Physiology and Functions (pp. 3–18). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Monzón, A., and Azcón, R. (1996). Relevance of mycorrhizal fungal origin and host plant genotype to inducing growth and nutrient uptake in Medicago species. Agric. Ecosyst. Environ., 60, 9–15.

    Google Scholar 

  • Morton, J. B., and Benny, G. L. (1990). Revised classification of arbuscular mycorrhizal fungi (zygomycetes), a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of glomaceae. Mycotaxon, 37, 471–491.

    Google Scholar 

  • Morton, J. B., Franke, M., and Bentivenga, S. P. (1995). Developmental foundations for morphological diversity among endomycorrhizal fungi in Glomales. In A. Varma and B. Hock (Eds.), Mycorrhiza, Structure, Function, Molecular Biology and Biotechnology (pp. 669–683). Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  • Mosse, B. (1986). Mycorrhiza in a sustainable agriculture. Biol. Agric., 3, 191–209.

    Google Scholar 

  • Nehl, D. B., Allen, S. J. and Brown, J. F. (1996). Deleterious rhizosphere bacteria: An integrating perspective. Appl. Soil Ecol., 5, 1–20.

    Google Scholar 

  • Pang, P. C., and Paul, E. A. (1980). Effects of vesicular arbuscular mycorrhiza on C14 and 15N distribution in nodulated fababeans. Can. J. Soil, 60, 241–250.

    CAS  Google Scholar 

  • Parniske, M. (2000). Intracellular accommodation of microbes by plants: A common developmental program for symbiosis and disease. Curr. Opinion Plant Biol., 3, 320–328.

    Article  CAS  Google Scholar 

  • Postgate, J. R. (1998). Nitrogen Fixation. London, UK: Cambridge University Press.

    Google Scholar 

  • Pozo, M. J., Slezack-Deschaumes, S., Dumas-Gaudot, E., Gianinazzi, S., Azcón-Aguilar, C. (2002). Plant defense responses induced by arbuscular mycorrhizal fungi. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 103–111). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Probanza, A., Lucas García, J. A., Ruiz Palomino, M., Ramos, B., and Gutiérrez Mañero, F. J. (2002). Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumillus CECT 5105). Appl. Soil Ecol., 20, 75–84.

    Google Scholar 

  • Provorov N. A., Borisov A. Y., and Tikhonovich, I. A. (2002). Developmental genetics and evolution of symbiotic structures in N2-fixing nodules and arbuscular mycorrhiza. J. Theor. Biol., 214, 215–232.

    Article  CAS  PubMed  Google Scholar 

  • Redecker, D., Morton, J. B., and Bruns, T. D. (2000). Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Molecular Phylogenetics and Evolution, 14, 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Redecker, D., von Berswordt-Wallrabe, P., Beck, D. P., and Werner, D. (1997a). Influence of inoculation with arbuscular mycorrhizal fungi on stable isotopes of nitrogen in Phaseolus vulgaris. Biol. Fertil. Soils, 24, 344–346.

    Article  CAS  Google Scholar 

  • Redecker, D., Thierfelder, H., Walker, C., and Werner, D. (1997b) Restriction analysis of PCR-amplified internal transcribed spacers of ribosomal DNA as a tool for species identification in different genera of the order Glomales. Appl. Environ. Microbiol., 63, 1756–1761.

    CAS  Google Scholar 

  • Requena, N., Jimenez, I., Toro, M., and Barea, J. M. (1997). Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol., 136, 667–677.

    Article  Google Scholar 

  • Requena, N., Pérez-Solís, E., Azcón-Aguilar, C., Jeffries, P., and Barea, J. M. (2001). Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl. Environ. Microbiol., 67, 495–498.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano, J. M., and Azcón, R. (1993). Specificity and functional compaibility of VA mycorrhizal endophytes in association with Bradyrhizobium strains in Cicer arietinum. Symbiosis, 15, 217–226.

    Google Scholar 

  • Ruiz-Lozano, J. M., Collados, C., Barea, J. M. and Azcón, R. (2001). Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol., 151, 493–502.

    Article  CAS  Google Scholar 

  • Ruiz-Lozano, J. M., Gianinazzi, S., and Gianinazzi-Pearson, V. (1999a). Genes involved in resistance to powdery mildew in barley differentially modulate root colonization by the mycorrhizal fungus Glomus mosseae. Mycorrhiza, 9, 237–240.

    Article  CAS  Google Scholar 

  • Ruiz-Lozano, J. M., Roussel, H., Gianinazzi, S., and Gianinazzi-Pearson, V. (1999b) Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Mol. Plant-Microbe Interact., 12, 976–984.

    CAS  Google Scholar 

  • Sanders, I. R., Alt, M., Groppe, K., Boller, T., and Wiemken, A. (1995). Identification of ribosomal DNA polymorphisms among and within spores of the Glomales, Application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol., 130, 419–427.

    CAS  Google Scholar 

  • Sanjuan, J., and Olivares, J. (1991). Multicopy plasmids carrying the Klebsiella pneumoniae nifA gene enhance Rhizobium meliloti nodulation competitiveness on alfalfa. Mol. Plant-Microbe Interact., 4, 365–369.

    CAS  Google Scholar 

  • Schüßler, A., Gehrig, H., Schwarzott, D., and Walker, C. (2001a). Analysis of partial Glomales SSU rRNA gene sequences, implications for primer design and phylogeny. Mycol. Res., 105, 5–15.

    Google Scholar 

  • Schüßler, A., Schwarzott, D., and Walker, C. (2001b). A new fungal phylum, the Glomeromycota, phylogeny and evolution. Mycol. Res., 105, 1413–1421.

    Google Scholar 

  • Simon, L., Lalonde, M., and Bruns, T. D. (1992). Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol., 58, 291–295.

    CAS  PubMed  Google Scholar 

  • Smith, S. E., Dickson, S., and Smith, F. A. (2001). Nutrient transfer in arbuscular mycorrhizas: How are fungal and plant processes integrated? Austr. J. Plant Physiol., 28, 683–694.

    CAS  Google Scholar 

  • Smith, S. E., Nicholas, D. J. D., and Smith, F. A. (1979). Effect of early mycorrhizal infection on nodulation and nitrogen fixation in Trifolium subterraneum L. Austr. J. Plant Physiol., 6, 305–316.

    CAS  Google Scholar 

  • Smith, S. E., and Read, D. J. (1997). Mycorrhizal Symbiosis. San Diego, CA: Academic Press.

    Google Scholar 

  • Spaink, H. P., Kondorosi, A., and Hooykaas, P. J. J. (1998). The Rhizobiaceae. Dordrecht, The Netherlands: Kluver Academic Publishers.

    Google Scholar 

  • Sprent, J. I. (1994). Evolution and diversity in the legume-Rhizobium symbiosis: Chaos theory? Plant Soil, 161, 1–10.

    Article  Google Scholar 

  • Stanley, T. W., Lawrence, E. G., and Nance, E. L. (1992). Influence of a plant growth-promoting Pseudomonas and vesicular-arbuscular mycorrhizal fungus on alfalfa and birdsfoot trefoil growth and nodulation. Biol. Fertil. Soils, 14, 175–180.

    Google Scholar 

  • Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J., Szczyglowski, K. and Parniske, M. (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417, 959–962.

    Article  CAS  PubMed  Google Scholar 

  • Tobar, R. M., Azcón-Aguilar, C., Sanjuán, J., Barea, J. M. (1996). Impact of a genetically modified Rhizobium strain with improved nodulation competitiveness on the early stages of arbuscular mycorrhiza formation. Appl. Soil Ecol., 4, 15–21.

    Article  Google Scholar 

  • Toro, M., Azcón, R., Barea, J. M. (1998). Use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol., 138, 265–273.

    Article  CAS  Google Scholar 

  • Tsimilli-Michael, M., Eggenberg, P., Biró, B., Köves-Pechy, K., Vörös, I., and Strasser, R. J. (2000). Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl. Soil Ecol., 15, 169–182.

    Article  Google Scholar 

  • Turnau, K., and Haselwandter, K. (2002). Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 137–149). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Valdenegro, M., Barea, J. M., and Azcón, R. (2001). Influence of arbuscular-mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for re-vegetation and biological reactivation in a semi-arid mediterranean area. Plant Growth Regulation, 34, 233–240.

    Article  CAS  Google Scholar 

  • Vance, C. P. (2001). Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol., 127, 390–397.

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden, M. G. A., and Sanders, I. R. (2002). Mycorrhizal Ecology. Berlin and Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  • van Kessel, Ch., Singleton, P. W. and Hoben H. J. (1985). Enhanced N-transfer from soybean to maize by vesicular-arbuscular (VAM) fungi. Plant Physiol., 79, 562–563.

    Google Scholar 

  • van Tuinen, D., Jacquot, E., Zhao, B., Gollotte, A., and Gianinazzi-Pearson, V. (1998). Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol. Ecol., 7, 879–887.

    PubMed  Google Scholar 

  • Vassilev, N., Vassileva, M., Azcón, R., and Medina, A. (2001). Interactions of an arbuscular mycorrhizal fungus with free or co-encapsulated cells of Rhizobium trifoli and Yarowia lipolytica inoculated into a soil-plantsystem. Biotechnol. Lett., 23, 149–151.

    CAS  Google Scholar 

  • Vázquez, M. M., Barea, J. M., and Azcón, R. (2002). Influence of arbuscular mycorrhizae and a genetically modified strain of Sinorhizobium on growth, nitrate reductase activity and protein content in shoots and roots of Medicago sativa as affected by nitrogen concentrations. Soil Biol. Biochem., 34, 899–905.

    Google Scholar 

  • Vázquez, M. M., Bejarano, C., Azcón, R., and Barea, J. M. (2000). The effect of a genetically modified Rhizobium meliloti inoculant on fungal alkaline phosphatase and succinate dehydrogenase activities in mycorrhizal alfalfa plants as affected by the water status in soil. Symbiosis, 29, 49–58.

    Google Scholar 

  • Vestberg, M., Cassells, A. C., Schubert, A., Cordier, C., and Gianinazzi, S. (2002). Arbuscular mycorrhizal fungi and micropropagtion of high value crops. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 223–2233). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Vierheilig, H., and Piché, Y. (2002). Signalling in arbuscular mycorrhiza: Facts and hypotheses. In B. Buslig and J. Manthey (Ed.), Flavonoids in cell functions (pp. 23–29). New York, NY: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Vinuesa, P., Kurz, E. M., Thierfelder, H., Leon-Barrios, M. Thynn, M. Sicardi-Mallorca, M., Rademaker, J. L. W., Martinez-Romero, E., de Bruijn, F. J., Bedmar, E., Izaguirre-Mayoral, M. L. and Werner, D. (2000). Genotypic diversity of Bradyrhizobium strains of tropical and temperate origin and the identification of the new genomic species nodulating endemic woody legumes (Fabaceae: Genisteae) from the Canary Islands. In F. O. Pedrosa, M. Hungría, M. G. Yates and W. E. Newton (Eds.), Nitrogen Fixation: From Molecules to Crop Productivity (pp. 195–210). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • von Alten, H., Blal, B., Dodd, J. C., Feldmann, F., and Vosatka, M. (2002). Quality control of arbuscular mycorrhizal fungi inoculum in Europe. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 281–296). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Vosatka, M., and Dodd, J. C. (2002). Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum. In S. Gianinazzi, H. Schüepp, J. M. Barea and K. Haselwandter (Eds.), Mycorrhiza Technology in Agriculture, from Genes to Bioproducts (pp. 235–247). Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Weller, D. M., and Thomashow, L. S. (1994). Current challanges in introducing beneficial microorganisms into the rhizosphere. In F. O’Gara, D. N. Dowling and B. Boesten (Eds.), Molecular Ecology of Rhizosphere Microorganisms Biotechnology and the Release of GMOs (pp. 1–18). Weinheim, Germany: VCH.

    Google Scholar 

  • Werner, D. (1998). Organic signals between plants and microorganisms. In R. Pinton, Z. Varanini and P. Nannipieri (Eds.), The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interfaces. New York, NY: Marcel Dekker.

    Google Scholar 

  • Werner, D., Barea, J. M., Brewing, N. J., Cooper, J. E., Katinakis, P., Lindström, K., O’Gara, F., Spaink, H. P., Truchet, G., and Müller, P. (2002). Symbiosis and defence in the interaction of plants with microorganisms. Symbiosis, 32, 83–104.

    Google Scholar 

  • Xavier, L. J. C., and Germida, J. J. (2002). Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol. Biochem., 34, 181–188.

    Article  CAS  Google Scholar 

  • Zapata, F., Danso, S. K. A., Hardanson, G., and Fried, M. (1987). Nitrogen-fixation and translocation in field grown fababean. Agron. J., 79, 505–509.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Barea, J.M., Werner, D., Azcón-Guilar, C., Azcón, R. (2005). Interactions of Arbuscular Mycorrhiza and Nitrogen-Fixing Symbiosis in Sustainable Agriculture. In: Werner, D., Newton, W.E. (eds) Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3544-6_10

Download citation

Publish with us

Policies and ethics