Skip to main content

Abstract

Donor cell lines were developed from skin tissue for the conservation of the endangered Jaiselmeri camel breed of India. Average cell proliferation rates varied from 0.82 to 0.69 in different passages, and population doubling time from 29.3 h to 34.8 h. Around 15 population doublings were accomplished during this culturing. Cell viability was 97 to 99% in different passages. Growth curves of cells from the JC-5 cell line reached a plateau on day 7, while the slower-growing cultures of JC-3 showed elevation even on day 10, possibly due to donor age differences. Cell proliferation rates by both cell count and MTT absorbance showed similar patterns, with a correlation coefficient of 0.79._MTT assay, a colorimetric method, can handle large samples in somatic cell cultures. Diploid chromosomal counts in passages 1, 3 and 5 were normal (2N=74, XY) in 97% of the cells. Occasional metaphase plates showed polyploidy. The present baseline data on standard growth curve, linear relationship in colorimetric assay for estimation of cell proliferation rate, and normal ploidy and karyological levels in camel skin fibroblast cells in multiplication could be useful in developing competent donor somatic cell lines for conservation now and revival of this camel breed by cloning in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Campbell, K.H.S. 1999. Nuclear equivalence, nuclear transfer, and the cell cycle. Cloning, 1: 3–15.

    Article  PubMed  CAS  Google Scholar 

  • Cibelli, J.B., Stice, S.L, Golucke, P.J., Kane, J.J., Jeny, J., Blackwell, C., Ponce de Leon, F.A. & Robl, J.M. 1998. Cloned transgenic calves produced from non-quiescent fetal fibroblasts. Science, 280: 1256–1258.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Cunningham, E.P. 1999. Recent developments in biotechnology as they relate to animal genetic resources for food and agriculture. FAO Commission on Genetic Resources for Food and Agriculture. Background Study Paper, No. 10. See: ftp://ext.ftp.fao.org/ag/cgrfa/BSP/bsp10E.pdf

    Google Scholar 

  • Dinnyes, A., Dal, Y.P., Barber, M., Liu, L., Xu, J., Zhou, P.L. & Yang, X.Z. 2001. Development of cloned embryos from adult rabbit fibroblasts: effect of activation treatment and donor cell preparation. Biology of Reproduction, 64: 257–263.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Gupta, N., Sharma, R., Taneja, R., Sisodia, B.S., Singla, S.K., Singh, G. & Gupta, S.C. 2002. Growth curve and ploidy levels in multiple passaging of buffalo skin fibroblast cells in culture. In: Proceedings 4th Asian Congress on Buffaloes. New Delhi, 22–23 February 2003.

    Google Scholar 

  • Hare, W.C.D. & Singh, E.L. 1979. Cytogenetics in Animal Reproduction. Wallingford, UK: Commonwealth Agricultural Bureaux.

    Google Scholar 

  • Kato, Y., Tani, T., Solomaru, Y., Kurokawa, A., Kato, J., Doguchi, H., Yasue, H. & Tsunoda, Y. 1998. Eight calves cloned from somatic cells of a single adult. Science, 282: 2095–2098.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Kubota, C., Yamakuchi, H., Todoroki, J., Mizoshita, K., Tabara, N., Barber, M. & Yang, X. 2000. Six cloned calves produced from adult fibroblast cells after long-term culture. Proceedings of the National Academy of Sciences, USA, 97(3): 990–995

    Article  CAS  Google Scholar 

  • Maghni, K., Nicolescu, O.M. & Martin, J.G. 1999. Suitability of cell metabolic colorimetric assays for assessment of CD4+ T cell proliferation: comparison to 5-bromo-2-deoxyuridine (BrdU) ELISA. Journal of Immunological Methods, 223(2): 185–194.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Mehra, K.L. 2001. Animal Biotechnologies: benefits and concerns. In: Proceeding of National Workshop on Conservation and Management of Genetic Resources of Livestock. National Academy of Agricultural Sciences, New Delhi.

    Google Scholar 

  • Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H. & Perry, A.C. 2000. Pig cloning by microinjection of fetal fibroblast nuclei. Science, 289(5482): 1188–1190.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D.L., Colman, A. & Campbell, K.H.S. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 407: 86–90.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Wakayama, T., Perry, A.C.F., Zuccott, M., Johnson, K.R. & Yangimachi, R. 1998. Full term development of mice from enucleated oocytes injected with cumulous cell nuclei. Nature, 394: 369–374.

    PubMed  CAS  ISI  Google Scholar 

  • Wells, D.N., Misica, P.M., Tervit, H.R. & Vivanco, W.H. 1998. Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby Island cattle breed. Reproduction Fertility and Development, 10: 369–378.

    CAS  Google Scholar 

  • Wemme, H., Pfeifer, S., Heck, R. & Muller-Quernheim, J. 1992. Measurement of lymphocyte proliferation: critical analysis of radioactive and photometric methods. Immunobiology, 185(1): 78–79.

    PubMed  CAS  ISI  Google Scholar 

  • White, K.L., Bunch, T.O., Mitalipov, S. & Reed, W.A. 1999. Establishment of pregnancy after the transfer of nuclear embryos produced from the fusion of argali (Ovis ammon) nuclei in to domestic sheep (Ovis aries) enucleated oocytes. Cloning1(1): 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Wilmut, I., Schnieke, A.E., Mcwhir, J., Kind, A.J. & Campbell, K.H. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810–813.

    Article  PubMed  CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IAEA

About this paper

Cite this paper

Gupta, S. et al. (2005). In Vitro Culture of Skin Fibroblast Cells for Potential Cloning by Nuclear Transfer. In: Makkar, H.P., Viljoen, G.J. (eds) Applications of Gene-Based Technologies for Improving Animal Production and Health in Developing Countries. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3312-5_47

Download citation

Publish with us

Policies and ethics