Skip to main content

Stokesian Dynamics Simulations for Particle Laden Flows

  • Chapter
Handbook of Materials Modeling
  • 364 Accesses

Abstract

Stokesian Dynamics is a molecular-dynamics-like method for simulating the behavior of many particles suspended in a fluid. The method treats the suspended particles in a discrete sense while the continuum approximation remains valid for the surrounding fluid, i.e., the suspended particles are generally assumed to be significantly larger than the molecules of the solvent. The particles then interact through hydrodynamic forces transmitted via the continuum fluid, and when the particle Reynolds number is small, these forces are determined through the linear Stokes equations (hence the name of the method). In addition, the method can also resolve non-hydrodynamic forces, such as Brownian forces, arising from the fluctuating motion of the fluid, and interparticle or external forces. Stokesian Dynamics can thus be applied to a variety of problems, including sedimentation, diffusion and rheology, and it aims to provide the same level of understanding for multiphase paniculate systems as molecular dynamics does for statistical properties of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.F. Brady and G. Bossis, “Stokesian dynamics”, Annu. Rev. Fluid Meek, 20, 111–157, 1988.

    Article  ADS  Google Scholar 

  2. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Prentice Hall, New York, 1965.

    Google Scholar 

  3. S. Kim and S.J. Karilla, Microhydrodynamics: Principles and Selected Applications, Butterworths, London, 1991.

    Google Scholar 

  4. L.J. Durlofsky, J.F Brady, and G. Bossis, “Dynamic simulations of hydrodynamically interacting particles”, Fluid Mech., 180, 21–19, 1987.

    Article  MATH  ADS  Google Scholar 

  5. J.F. Brady, R.J. Phillips, J.C. Lester, and G. Bossis, dynamic simulation of hydrodynamically interacting suspensions”, J. Fluid Mech., 195, 257–280, 1988.

    Article  MATH  ADS  Google Scholar 

  6. G.K. Batchelor and J.T. Green, “The hydrodynamic interaction of two small freely moving spheres in a linear flow field”, J. Fluid Mech., 56, 375–400, 1972.

    Article  MATH  ADS  Google Scholar 

  7. A. Sierou and J.F. Brady, “Accelerated Stokesian dynamics simulations”, J. Fluid Mech, 448, 115–146, 2001.

    Article  MATH  ADS  Google Scholar 

  8. D.L. Ermak and J.A. McCammon, “Brownian dynamics with hydrodynamic interactions”, J. Chem. Phys., 69, 1352–1360, 1978.

    Article  ADS  Google Scholar 

  9. W.B. Russel, D.A. Saville, and W.R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  10. A.J. Banchio and J.F. Brady, “Accelerated Stokesian dynamics: Brownian motion, ” J. Chem. Phys., 118, 10323–10332, 2003.

    Article  ADS  Google Scholar 

  11. R.J. Phillips, J.F. Brady, and G. Bossis, “Hydrodynamic transport properties of hard-sphere dispersions. I. Suspensions of freely mobile particles”, Phys. Fluids, 31, 3462–3472, 1988.

    Article  ADS  Google Scholar 

  12. A.J.C. Ladd, “Hydrodynamic transport coefficients of random dispersions of hard spheres”, J. Chem. Phys., 93, 3484–3494, 1990.

    Article  ADS  Google Scholar 

  13. J.R. Melrose and R.C. Ball, “The pathological behavior of sheared hard-spheres with hydrodynamic interactions”, Europhys. Lett., 32, 535–546, 1995.

    Article  ADS  Google Scholar 

  14. D.I. Dratler and W.R. Schowalter, “Dynamic simulation of suspensions of non-Brownian hard spheres”, J. Fluid Mech., 325, 53–77, 1996.

    Article  MATH  ADS  Google Scholar 

  15. J.F. Brady and J.F. Morris, “Microstructure of strongly sheared suspensions and its impact on rheology and diffusion”, J. Fluid Mech., 348, 103–139, 1997.

    Article  MATH  ADS  Google Scholar 

  16. J.F. Brady, “The rheological behavior of concentrated colloidal dispersions, ” J. Chem. Phys., 99, 567–581, 1993.

    Article  ADS  Google Scholar 

  17. D.R. Foss and J.R. Brady, “Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulations”, J. Fluid Mech., 407, 167–200, 2000.

    Article  MATH  ADS  Google Scholar 

  18. P.R. Nott and J.F. Brady, “Pressure driven flow of suspensions: simulation and theory”, J. Fluid Mech., 275, 157–199, 1994.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Sierou, A. (2005). Stokesian Dynamics Simulations for Particle Laden Flows. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_139

Download citation

Publish with us

Policies and ethics