Skip to main content

Vibrational Spectra and Molecular Structure of the Hydrofullerenes C60H18, C60D18, and C60H36 as Studied by IR and Raman Spectroscopy and First-Princliple Calculations

  • Conference paper
Hydrogen Materials Science and Chemistry of Carbon Nanomaterials

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 172))

Abstract

IR and Raman spectra of hydrofullerenes C60H18, C60H36, and deuterofullerene C60D18, were thoroughly studied by the conjunction of experimental and computational technique. A perfect correspondence achieved between the first-principle calculations and the observed vibrational spectra for C60H18 molecule resulted in a complete assignment of both light and heavy isotopomers spectra. An extended search of the C60H36 stable isomeric structures was performed in the frames of PM3 and DFT levels of a theory. Vibrational spectra for 30 most stable isomers were computed and the structure of two dominant C60H36 isomers was determined. Interpretation of the experimental spectra as a 3∶1 superposition of the C 1 and C 3 isomers features was fulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haufler RE, Conceicao J, Chibante LPF, Chai Y, Byrne NE, Flanagan S, et al. Efficient Production of C60 (Buckminsterfullerene), C60H36, and the Solvated Buckide Ion. J Phys Chem 1990; 94: 8634–8639.

    Article  CAS  Google Scholar 

  2. Attalla MI, Vassallo AM, Tattam BN, Hanna JV. Preparation of Hydrofullerenes by Hydrogen Radical Induced Hydrogenation. J Phys Chem 1993; 97: 6329–6331.

    Article  CAS  Google Scholar 

  3. Rüchardt C, Gerst M, Ebenhoch J, Beckhaus H-D, Campbell EEB, Tellgmann R, et al. Transfer Hydrogenation and Deuteration of Buckminsterfullerene C60 by 9,10-Dihydroanthracene and 9,9’,10,10’[D4] Dihydroanthracene. Angew Chem Int Ed 1993; 32(4): 584–586.

    Article  Google Scholar 

  4. Darwish AD, Abdul-Sada AK, Langley CJ, Kroto HW, Taylor R, Walton DRM. Polyhydrogenation of [60]-and [70]-fullerenes. J Chem Soc Perkin Trans 2 1995; 2359–2365.

    Google Scholar 

  5. Lobach AS, Perov AA, Rebrov AI, Roschupkina OS, Tkacheva VA, Stepanov AN. Preparation and study of hydrides of fullerenes C60 and C70. Russ Chem Bull 1997; 46(4): 641–648.

    Article  CAS  Google Scholar 

  6. Darwish AD, Avent AG, Taylor R, Walton DRM. Structural characterization of C60H18: a C3v symmetry crown. J Chem Soc Perkin Trans 2 1996; 2051–2054.

    Google Scholar 

  7. Bini R, Ebenhoch J, Fanti M, Fowler PW, Leach S, Orlandi G, et al. The vibrational spectroscopy of C60H36: An experimental and theoretical study. Chem. Phys 1998; 232: 75–94.

    Article  CAS  Google Scholar 

  8. Okotrub AV, Bulusheva LG, Asanov IP, Lobach AS, Shulga YM. X-ray Spectroscopic and Quantum-Chemical Characterization of Hydrofullerene C60H36. J Phys Chem A 1999; 103: 716–720.

    Article  CAS  Google Scholar 

  9. Bulusheva LG, Okotrub AV, Antich AV, Lobach AS. Ab initio calculation of X-ray emission and IR spectra of the hydrofullerene C60H36. J Mol Struct 2001; 562(2–3): 119–127.

    Article  CAS  Google Scholar 

  10. Meletov K, Assimopoulos S, Tsilika I, Bashkin IO, Kulakov VI, Khasanov SS, Kourouklis GA. Isotopic and isomeric effects in high-pressure hydrogenated fullerenes studied by Raman spectroscopy. Chem Phys 2001; 263: 379–388.

    Article  CAS  Google Scholar 

  11. Nossal J, Saini RK, Sadana AK, Bettinger HF, Alemany LB, Scuseria GE, et al. Formation, Isolation, Spectroscopic Properties, and Calculated Properties of Some Isomers of C60H36. J Am Chem Soc 2001; 123(35): 8482–8495.

    Article  CAS  PubMed  Google Scholar 

  12. Popov AA, Senyavin VM, Granovsky AA, Lobach AS. Vibrational Spectra of Hydrofullerenes, C60H18/C60D18 and C60H36, as Studied by IR Spectroscopy and ab initio Calculations. In: Kamat PV, Guldi DM, Kadish KM, editors. Fullerenes — Volume11: Fullerenes For The New Millennium (Proceedings of the International Symposium on Fullerenes, Nanotubes, and Carbon Nanoclusters), New Jersy: The Electrochemistry Society, Inc., 2001, 405–415.

    Google Scholar 

  13. Boltalina OV, Buhl M, Khong A, Saunders M, Street JM, Taylor R. The 3He NMR spectra of C60F18 and C60F36: the parallel between hydrogenation and fluorination. J Chem Soc Perkin Trans 2 1999; 1475–1479.

    Google Scholar 

  14. Dunlap BI, Brenner DW, Schriver GW. Symmetric Isomers of Hydrofullerene C60H36. J Phys Chem 1994; 98: 1756–1757.

    Article  CAS  Google Scholar 

  15. Buhl M, Thiel W, Schneider U. Magnetic Properties of C60H36 Isomers. J Am Chem Soc 1995; 117: 4623–4627.

    Article  Google Scholar 

  16. Clare BW, Kepert DL. Structures, stabilities and isomerism in C60H36 and C60F36. A comparison of the AM1 Hamiltonian and density functional techniques. J Mol Struct (THEOCHEM) 2002; 589: 195–207.

    Article  Google Scholar 

  17. Shuľga YM, Tarasov BP, Fokin VM, Shuľga NY, Vasilets VN. Crystalline fullerene deuteride C60D24: Spectral investigation. Phys Solid State 1999; 41(8): 1391–1397.

    Article  ADS  Google Scholar 

  18. Somenkov VA, Glazkov VP, Shiľshtein SS, Zhukov VP, Bezmeľnitsyn VN, Kurbakov AI. Neutron diffraction study of the structure of deuterated and fluorinated fullerene C60. Met Sci Heat Treat 2000: 42: 319–325.

    Article  CAS  Google Scholar 

  19. Laikov DN. Fast Evaluation of Density Functional Exchange-Correlation Terms Using the Expansion of the Electron Density on Auxiliary Basis Sets. Chem Phys Lett 1997; 281: 151–156.

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996; 77(18): 3865–3868.

    Article  CAS  ADS  PubMed  Google Scholar 

  21. Granovsky AA. PC GAMESS URL: http://classic.chem.msu.su/gran/gamess/index.html

  22. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, et al. General Atomic and Molecular Electronic-Structure System. J Comput Chem 1993; 14(11): 1347–1363.

    Article  CAS  Google Scholar 

  23. Yagola AG, Kochikov IV, Kuramshina GM, Pentin YA. Inverse Problems of Vibrational Spectroscopy. Zeist: VSP. 1999.

    MATH  Google Scholar 

  24. Neretin IS, Lyssenko KA, Antipin MY, Slovokhotov YL, Boltalina OV, Troshin PA, Lukonin AY, Sidorov LN, Taylor R. C60F18, a flattened fullerene: Alias a hexa-substituted benzene. Angew Chem Int Ed 2000; 39(18): 3273–3276.

    Article  CAS  Google Scholar 

  25. Goodman L, Ozkabak AG, Thakur SN. A Benchmark Vibrational Potential Surface — Ground-State Benzene. J Phys Chem 1991; 95(23): 9044–9058.

    Article  CAS  Google Scholar 

  26. Clare BW, Kepert DL. The structures of C60F36 and new possible structures for C60H36. J Mol Struct (THEOCHEM) 1999; 466: 177–186.

    Article  CAS  Google Scholar 

  27. Ernzerhof M, Scuseria GE. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J Chem Phys 1999; 110 (11): 5029–5036.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Popov, A., Senyavin, V.V., Granovsky, A.A., Lobach, A.S. (2004). Vibrational Spectra and Molecular Structure of the Hydrofullerenes C60H18, C60D18, and C60H36 as Studied by IR and Raman Spectroscopy and First-Princliple Calculations. In: Veziroglu, T.N., Yu. Zaginaichenko, S., Schur, D.V., Baranowski, B., Shpak, A.P., Skorokhod, V.V. (eds) Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 172. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2669-2_39

Download citation

Publish with us

Policies and ethics