Skip to main content

Quantum-Chemical Investigations of Single Wall Carbon Nanotube Hydrogenation Processes

  • Conference paper
Hydrogen Materials Science and Chemistry of Carbon Nanomaterials

Abstract

Calculations of electron energetic characteristics of atomic hydrogen adsorption processes on external and internal surfaces of (6,6) and (10, 0) single-walled carbon nanotubes (SWNTs) having cylindrical symmetry have been carried out. Ionic-embedded covalent-cyclic cluster (IECCC) and molecular cluster models within the framework of semi-empirical quantum-chemical scheme MNDO well shown in the theoretical researches of electronic molecular and periodic solid-state structures have been used. The electronic and energy characteristics of the hydrogenation processes have been analyzed, and the most energetically favorable SWNT hydride structures have been determined. The mechanisms of SWNT hydrogenation processes have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of Fullerenes and Carbon Nanatubes, Academic Press, 1996, 965 P.

    Google Scholar 

  2. Ivanovoskii A.L. Kvantovaja khimia in materialovedenii. Nanotubularnye formy veshestva. Ekaterinburg: UrORAN, 1999, 176 P.

    Google Scholar 

  3. Saito R., Dresselhaus M.S., Dresselhaus G. Physical properties of carbon nanotubes, Imperial College Press, 1999, 251 p.

    Google Scholar 

  4. Dillon A.C., Jones K.M., Beccedahl T.A., Kiang C.H., Bethune D.S., He-ben M.G. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997; 386(27): 377–379.

    Article  CAS  Google Scholar 

  5. Chambers A., Park C., Baker R.T.K., Rodrigues N.M. Hydrogen storage in graphite nanofibers. J. Phys. Chem. B 1998; 102(22): 4253–4256.

    Article  CAS  Google Scholar 

  6. Park C., Anderson P.E., Chambers A., Tan C.D., Hidalgo R., Rodrigues N.M. Further studies of the interaction of hydrogen with graphite nanofibers. J. Phys. Chem. B 1999; 105: 10572–10581.

    Article  Google Scholar 

  7. Zaporotskova I.V., Litinskii A.O., Chernozatonskii L.A. Adsorbcia atomov H, O, C I Cl na poverhnosti odnosloinih yglerodnih tubulenov. Vestnik VolSU: Seria Mathematika. Physika 1997; 2: 96–99.

    Google Scholar 

  8. Zaporotskova I.V., Litinskii A.O., Chernozatonskii L.A. Characteristics features of the sorption of light atoms on the surface of a single-layer carbon tubelene. JETP Lett. 1997; 66(12): 841–846.

    Article  ADS  Google Scholar 

  9. Chernozatonsky L.A., Lebedev N.G., Zaporotskova I.V., Litinskii A.O., Gaľpern E.G., Stankevich I.V., Chistyakov A.L. Carbon single-walled nanotubes as adsorbents of light (H, O, C, Cl) and metal (Li, Na) atoms. In book: Adsorption Science and Technology, Brisbane: World Scientific, Australia, 14–18 May 2000, p. 125–129.

    Google Scholar 

  10. Zaporotskova I.V., Lebedev N.G., Chernozatonski L.A. Some features of hydrogenization of single-walled carbon nanotubes. In book: Abstracts of invited lectures and contributed papers “Fullerenes and Atomic Clusters”, St.Peterburg: FIZINTEL, Russia, 2–6 July 2001, p. 325.

    Google Scholar 

  11. Froudakis G.E. Hydrogen interaction with single-walled carbon nanotubes: a combined quantum-mechanics/molecular-mecanics study. Nano Lett. 2001; 1(4): 179–182.

    Article  CAS  Google Scholar 

  12. Tada K., Furuya S., Watanabe K. Ab initio study of hydrogen adsorption to single-walled carbon nanotubes. Phys. Rev. B 2001; 63: 155405–7.

    Article  ADS  Google Scholar 

  13. Yang F.H., Yang R.T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: insight into hydrogen storage in carbon nanotubes. Carbon 2002; 40: 437–444.

    Article  CAS  Google Scholar 

  14. Bauschlicher Jr C.W. Hight coverages of hydrogen on a (10,0) carbon nanotubes. Nano Lett. 2001; 1(5): 223–226.

    Article  CAS  Google Scholar 

  15. Andriotis A.N., Menon M., Srivastava D., Froudakis G. Extreme hydrogen sensitivity of the transport properties of single-wall carbon nanotube capsules. Phys. Rev. B 2001; 64: 193401–4.

    Article  ADS  Google Scholar 

  16. Yildrim T., Guelseren O., Ciraci S. Exohydrogenated single-wall carbon nanotubes. Phys. Rev. B 2001; 64: 075404–5.

    Article  ADS  Google Scholar 

  17. Chen P., Wu X., Lin J., Tan K.L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperature. Science 1999; 285(2): 91–93.

    Article  CAS  PubMed  Google Scholar 

  18. Liu C., Fan Y.Y., Liu M., Cong H.T., Cheng H.M., Dresselhause M.G. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 1999; 286(5): 1127–1129.

    Article  CAS  PubMed  Google Scholar 

  19. Ma Y., Xia Y., Zhao M., Mei L. Effective hydrogen storage in single-wall carbon nanotubes. Phys. Rev. B 2001; 63: 115422–6.

    Article  ADS  Google Scholar 

  20. Chan S. ae al. Chemisorption of hydrogen molecules on carbon nanotubes under high pressure. Phys. Rev. Lett. 2001; 87(20): 205502–4.

    Article  CAS  ADS  PubMed  Google Scholar 

  21. Lebedev N.G., Zaporotskova I.V., Chernozatonskii L.A. Single and regular hydrogenation and oxidation of carbon nanotubes: MNDO calculations. International Journal of Quantum Chemistry 2003; 95(3) (accepted).

    Google Scholar 

  22. Lebedev N.G., Zaporotskova I.V., Chernozatonskii L.A. Hiral effects of single wall carbon nanotube fluorination and hydrogenation. In book: Abstracts of invited lectures and contributed papers “Fullerenes and Atomic Clusters”, St.Peterburg: FIZINTEL, Russia, 30 June–4 July 2003, p. 251.

    Google Scholar 

  23. Evarestov R.A. Klasternoe priblijenie v teorii tochechnih defektov v tverdih telah. Zur nal strukt. Khimii 1983; 24(4): 44–61.

    CAS  Google Scholar 

  24. Dewar M.J.S., Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and Parameters. J. Am. Chem. Soc. 1977; 99: 4899–4906.

    Article  CAS  Google Scholar 

  25. Dewar M.J.S., Thiel W. A semiempirical model for the two-center repulsion integrals in the NDDO approximation. Theor. Chim. Acta 1977; 46: 89–104.

    Article  CAS  Google Scholar 

  26. Litinskii A.O., Lebedev N.G., Zaporotskova I.V. A model of an ion-incorporated covalent cyclic cluster in MNDO calculations of intermolecular interactions in heterogeneous systems. Russian J. Phys. Chem. 1995; 69(1): 175–178.

    Google Scholar 

  27. Emanuel N.M., Knorre D.G. Kurs himicheskoi kinetiki. Moscow: Visshaya shkola, 1984, 463 p.

    Google Scholar 

  28. Stromberg. G., Semchenko D.P. Fisicheskaya himia. Moscow: Visshaya shkola, 1988, 496 p.

    Google Scholar 

  29. Landau L.D., Lifshic E.M. The quantum mechanics. Moscow: Nauka, 1974, 752 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Lebedev, N.G., Zaporotskova, I.V., Chernozatonskii, L.A. (2004). Quantum-Chemical Investigations of Single Wall Carbon Nanotube Hydrogenation Processes. In: Veziroglu, T.N., Yu. Zaginaichenko, S., Schur, D.V., Baranowski, B., Shpak, A.P., Skorokhod, V.V. (eds) Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 172. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2669-2_26

Download citation

Publish with us

Policies and ethics