Skip to main content

Chemistry of Protoplanetary Disks

Relation to Primitive Solar System Material

  • Chapter
Astrobiology: Future Perspectives

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 305))

Abstract

We consider the chemistry occurring in protoplanetary disks and its possible contribution to the organic inventory of primitive solar system bodies. First, we outline the main physical and chemical processes associated with the formation of solar-type stars and their accretion disks. We then summarise the current observational status of protoplanetary disks and review chemical models of them. Finally, we discuss possible signatures of nebular chemistry in primitive organic material, paying particular attention to those related to isotope fractionation in comets and meteorites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams F.C., Lin D.N.C., 1993, Transport processes and the evolution of disks, in Protostars and Planets III, eds. Levy E.H., Lunine J.I., University of Arizona Press. Tuscon. pp 721–748.

    Google Scholar 

  • A’Hearn M.F., Millis R.L., Schleicher D.G., Osip D.J., Birch P.V., 1995, The ensemble properties of comets: Results from narrowband photometry of 85 comets, 1976–1992, Icarus 118, 223–270.

    ADS  Google Scholar 

  • Aikawa Y., Momose M., Thi W.-F., van ZadelhoV G.-H., Qi C., Blake G.A., van Dishoeck E.F., 2003, Interferometric Observations of Formaldehyde in the Protoplanetary Disk around LkCa15, PASJ, in press, astro-ph/0211440.

    Google Scholar 

  • Aikawa Y., van ZadelhoV G.-H., van Dishoeck E.F., Herbst E., 2002, Warm molecular layers in protoplanetary disks, A&A 386, 622–632.

    Article  ADS  Google Scholar 

  • Aikawa Y., Ohashi N., Inutsuka S., Herbst E., Takakuwa S., 2001, Molecular evolution in collapsing prestellar cores, ApJ 552, 639–653.

    Article  ADS  Google Scholar 

  • Aikawa Y., Herbst E., 2001, Two-dimensional distributions and column densities of gaseous molecules in protoplanetary disks. II Deuterated species and UV shielding by ambient clouds, A&A 371, 1107–1117.

    ADS  Google Scholar 

  • Aikawa Y., Umebayashi T., Nakano T., Miyama S., 1999, Evolution of Molecular Abundances in Protoplanetary Disks with Accretion Flow, ApJ 519, 705–725.

    Article  ADS  Google Scholar 

  • Aikawa Y., Herbst E., 1999a, Molecular evolution in protoplanetary disks. Two-dimensional distributions and column densities of gaseous molecules, A&A 351, 233–246.

    ADS  Google Scholar 

  • Aikawa Y., Herbst E., 1999b, Deuterium Fractionation in Protoplanetary Disks, ApJ 526, 314–326.

    Article  ADS  Google Scholar 

  • Aikawa Y., Miyama S.M., Nakano T., Umebayashi T., 1996, Evolution of Molecular Abundance in Gaseous Disks around Young Stars: Depletion of CO Molecules, ApJ 467, 684–697.

    Article  ADS  Google Scholar 

  • Aléon J., Robert F., 2004, Interstellar chemistry recorded by nitrogen isotopes in Solar System organic matter, Icarus 167, 424–430.

    ADS  Google Scholar 

  • Aléon J., Robert F., Chaussidon M., Marty B., 2003, Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles, Geochimica et Cosmochimica Acta 67, 3773–3783.

    ADS  Google Scholar 

  • Alves J.F., Lada C.J., Lada E.A., 2001, Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight, Nature 409, 159–161.

    Article  ADS  Google Scholar 

  • Arpigny C., Jehin E., Manfroid J., Hutesmekers D., Zucconi J.-M., Schulz R., Stuewe J.A., 2003, Anomalous Nitrogen Isotope Ratio in Comets., Science 301, 1522–1524.

    Article  ADS  Google Scholar 

  • Balbus S.A., Hawley J.F., 2000, Solar Nebula Magnetohydrodynamics, Space Sci. Rev. 92, 39–54.

    Article  ADS  Google Scholar 

  • Bauer I., Finocchi F., Duschl W.J., Gail H.-P., Schloeder J.P., 1997, Simulation of chemical reactions and dust destruction in protoplanetary accretion disks, A&A 317, 273–289.

    ADS  Google Scholar 

  • Baulch D.L., Cobos C.J., Cox R.A., Esser C., Franck P., Just Th., Ker J.A., Pilling M.J., Troe J., Walker R.W., Warnatz J., 1992, Journ. Phys. Chem. Ref. Data 21, 411.

    ADS  Google Scholar 

  • Bell K.R., Cassen P.M., Klahr H.H., Henning Th., 1997, The Structure and Appearance of Protostellar Accretion Disks: Limits on Disk Flaring, ApJ 486, 372–387.

    Article  ADS  Google Scholar 

  • Benz W., Kallenbach R., Lugmair G.W. (Eds.), 2000, From Dust to Terrestrial Planets, 421pp, Kluwer Academic Publishers.

    Google Scholar 

  • Bergin E.A., Alves J., Huard T., Lada C.J., 2002, N2H + and C 18 O Depletion in a Cold Dark Cloud, ApJ 570, L101–L104.

    Article  ADS  Google Scholar 

  • Blagojevic V., Petrie S., Bohme D.K., 2003, Gas-phase syntheses for interstellar carboxylic and amino acids, MNRAS, 339, L7–L11.

    Article  ADS  Google Scholar 

  • Bockelée-Morvan D., Gautier D., Hersant F., Hure J.-M., Robert F., 2002, Turbulent radial mixing in the solar nebula as the source of crystalline silicates in comets, A&A 384, 1107–1118.

    ADS  Google Scholar 

  • Boss A.P., 1998, Temperatures in Protoplanetary Disks, Ann. Rev. Earth Planet. Sci. 26, 53–80.

    ADS  Google Scholar 

  • Botta O., Bada J., 2002. Extraterrestrial Organic Compounds in Meteorites, Surveys in Geophysics 23, 411–467.

    Article  ADS  Google Scholar 

  • Butterworth A.L., Aballain O., Chappellaz J., Sephton M.A., 2004, Combined element (H and C) stable isotope ratios of methane in carbonaceous chrondrites, MNRAS 347, 807–812.

    Article  ADS  Google Scholar 

  • Cameron A.G.W., 1995, The Wrst ten million years in the solar nebula, Meteoritics 30, 133–161.

    ADS  Google Scholar 

  • Cassen P., Moosman A., 1981, On the formation of protostellar disks, Icarus 48, 353–376.

    ADS  Google Scholar 

  • Charnley S.B., Ehrenfreund P., Millar T.J., Boogert A.C.A., Markwick A.J, Butner H.M., Ruiterkamp R., Rodgers S.D., 2004, Observational tests for grain chemistry: posterior isotopic labelling, MNRAS 347, 157–162.

    Article  ADS  Google Scholar 

  • Charnley S.B., Rodgers S.D., 2002, The End of Interstellar Chemistry as the Origin of Nitrogen in Comets and Meteorites, ApJ 569, L133–L137.

    Article  ADS  Google Scholar 

  • Charnley S.B., 2001, Interstellar Organic Chemistry, in The Bridge Between the Big Bang and Biology, Ed. F. Giovannelli, Consiglio Nazionale delle Ricerche President Bureau, (Rome:Italy), Special Volume, 139–149.

    Google Scholar 

  • Charnley S.B., Kress M.E., Tielens A.G.G.M., Millar T.J., 1995, Interstellar Alcohols, ApJ 448, 232–239.

    Article  ADS  Google Scholar 

  • Charnley S.B., 1995, The Interstellar Chemistry of Protostellar Disks, Ap&SS 224, 441–442.

    ADS  Google Scholar 

  • Charnley S.B., Dyson J.E., Hartquist T.W., Williams D.A., 1988, Chemical limit cycles for models of a region of low-mass star formation, MNRAS 235, 1257–1271.

    ADS  Google Scholar 

  • Chiang E.I., Goldreich P., 1999, Spectral Energy Distributions of T Tauri Disks: Inclination, ApJ 519, 279–284.

    Article  ADS  Google Scholar 

  • Chiang E.I., Goldreich P., 1997, Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks, ApJ 490, 368–376.

    Article  ADS  Google Scholar 

  • Chick K.M., Cassen P., 1997, Thermal Processing of Interstellar Dust Grains in the Primitive Solar Environment, ApJ 477, 398–409.

    Article  ADS  Google Scholar 

  • Clayton R.N., 2002, Self-shielding in the solar nebula, Nature 415, 860–861.

    Article  ADS  Google Scholar 

  • Clemett S.J., Chillier D.F., Gillette S., Zare R.N., Maurette M., Engrand C., Kurat G., 1998, Observation of indigenous polycyclic aromatic hydrocarbons in ‘giant’ carbonaceous Antarctic micrometeorites, Orig. Life Evol. Bios. 28, 424–448.

    ADS  Google Scholar 

  • Cronin J.R., Chang S., 1993, Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite, in The Chemistry of Life’s Origins, ed. J.M. Greenberg et al. Kluwer Academic Publishers, pp. 209–258.

    Google Scholar 

  • Cronin J.R., 1989, Origin of organic compounds in carbonaceous chondrites, Adv. Space. Res. 9, 59–64.

    ADS  Google Scholar 

  • Chyba C.F., Thomas P.J., Brookshaw L., Sagan C., 1990, Cometary Delivery of Organic Molecules to the Early Earth, Science

    Google Scholar 

  • Cyr K.E., Sears W.D., Lunine J.I., 1998, Distribution and Evolution of Water Ice in the Solar Nebula: Implications for Solar System Body Formation, Icarus 135, 537–548.

    Article  ADS  Google Scholar 

  • D’Alessio P., Canto J., Calvet N., Lizano S., 1998, Accretion Disks around Young Objects I. The Detailed Vertical Structure, ApJ 500, 411–427.

    ADS  Google Scholar 

  • Dartois E., Dutrey A., Guilloteau S., 2003, Structure of the DM Tau Outer Disk: Probing the vertical kinetic temperature gradient, A&A 399, 773–787.

    ADS  Google Scholar 

  • Desch S.J., Mouschovias T., 2001, The Magnetic Decoupling Stage of Star Formation, ApJ 550, 314–333.

    Article  ADS  Google Scholar 

  • Drouart A., Dubrulle B., Gautier D., Robert F., 1999, Structure and Transport in the Solar Nebula from Constraints on Deuterium Enrichment and Giant Planets Formation, Icarus 40, 129–155.

    ADS  Google Scholar 

  • Dutrey A., Guilloteau S., Guelin M., 2000, Observations of the Chemistry in Circumstellar Disks, in Astrochemistry: From Molecular Clouds to Planetary Systems. (Y.C. Minh, E.F. van Dishoeck Eds.), pp. 415–423. Astronomical Society of the PaciWc, Sogwipo.

    Google Scholar 

  • Dutrey A., Guilloteau S., Guelin, M., 1997, Chemistry of protosolar-like nebulae: The molecular content of the DM Tau and GG Tau disks, A&A 317, L55–L58.

    ADS  Google Scholar 

  • Dutrey A., Guilloteau S., Simon M., 1994, Images of the GG Tauri rotating ring, A&A 286, 149–159.

    ADS  Google Scholar 

  • Ehrenfreund P., Irvine W.M., Becker L., Blank J., Brucato J.R. et al., 2002, Astrophysical and astrochemical insights into the origin of life, Rep. Prog. Phys. 65, 1427–1487.

    Article  ADS  Google Scholar 

  • Ehrenfreund P., Glavin D.P., Botta O., Cooper G., Bada J.L., 2001, Extraterrestrial amino acids in Orguil and Ivuna: tracing the parent body of CI type carbonaceous chondrites Proc. Natl. Acad. Sci. 98, 2138–2141.

    Article  ADS  Google Scholar 

  • Ehrenfreund P., Charnley S.B., 2000, Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth, Annu. Rev. Astron. Astrophys. 38, 427–483.

    Article  ADS  Google Scholar 

  • Elmegreen B.G., 2000, Star Formation in a Crossing Time, ApJ 530, 277–281.

    Article  ADS  Google Scholar 

  • Evans N., 1999, Physical Conditions in Regions of Star Formation, Annu. Rev. Astron. Astrophys. 37, 311–362.

    ADS  Google Scholar 

  • Fegley B., 2000, Kinetics of Gas-Grain Reactions in the Solar Nebula, Space Sci. Rev. 92, 177–200.

    ADS  Google Scholar 

  • Fegley B., 1999, Chemical and Physical Processing of Presolar Materials in the Solar Nebula and the Implications for Preservation of Presolar Materials in Comets, Space Sci. Rev. 90, 239–252.

    ADS  Google Scholar 

  • Fegley B., Prinn R.G., 1989, Solar nebula chemistry — Implications for volatiles in the solar system, in The formation and evolution of planetary systems (eds. H.A. Weaver, L. Danly), pp. 171–205. Cambridge University Press.

    Google Scholar 

  • Finocchi F., Gail H.-P, 1997, Chemical reactions in protoplanetary accretion disks. III. The role of ionisation processes, A&A 327, 825–844.

    ADS  Google Scholar 

  • Frenklach M., Feigelson E.D., 1989, Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes, ApJ 341, 372–384.

    Article  ADS  Google Scholar 

  • Gail H.-P., 2001, Radial mixing in protoplanetary accretion disks. I. Stationary disc models with annealing and carbon combustion, A&A 378, 192–213.

    Article  ADS  Google Scholar 

  • Gail H.-P., 2002, Radial mixing in protoplanetary accretion disks. III. Carbon dust oxidation and abundance of hydrocarbons in comets, A&A 390, 253–265.

    ADS  Google Scholar 

  • Geppert W. et al., 2004, Branching ratios and cross sections of astrophysically important dissociative recombination reactions, in Pfalzner S. et al. Eds., Proc. 4th Cologne-Bonn-Zermatt Symposium, Springer-Verlag, Berlin, in press.

    Google Scholar 

  • Gilmour I., Pillinger C.T., 1994, Isotopic compositions of individual polycyclic aromatic hydrocarbons from the Murchinson meteorite, MNRAS 269, 235–240.

    ADS  Google Scholar 

  • Glassgold A.E., Najita J., Igea J., 1997, X-Ray Ionization of Protoplanetary Disks, ApJ 480, 344–350.

    Article  ADS  Google Scholar 

  • Goldsmith P.F., Langer W.D., Velusamy T., 1999, Detection of Methanol in a Class 0 Protostellar Disk, ApJ 519, L173–L176.

    Article  ADS  Google Scholar 

  • Goldsmith P.F., Langer W.D., 1978, Molecular cooling and thermal balance of dense interstellar clouds, ApJ 222, 881–895.

    Article  ADS  Google Scholar 

  • Harker D.E., Desch S.J., 2002, Annealing of Silicate Dust by Nebular Shocks at 10 AU, ApJ 565, L109–L112.

    Article  ADS  Google Scholar 

  • Hartmann L., Ballesteros-Paredes J., Bergin E.A., 2001, Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood, ApJ 562, 852–868.

    Article  ADS  Google Scholar 

  • Hayashi C., 1981, Structure of the solar nebula, growth and decay of magnetic Welds and effects of magnetic and turbulent viscosities on the nebula, Prog. Theor. Phys. Suppl. 70, 35–53.

    Google Scholar 

  • Hersant F., Gautier D., Hure, J-M., 2001, A Two-dimensional Model for the Primordial Nebula Constrained by D/H Measurements in the Solar System: Implications for the Formation of Giant Planets, ApJ 554, 391–407.

    Article  ADS  Google Scholar 

  • Hollenbach D., Salpeter E.E., 1971, Surface Recombination of Hydrogen Molecules, ApJ 163, 155–164.

    ADS  Google Scholar 

  • Igea J., Glassgold A.E., 1999, X-Ray Ionization of the Disks of Young Stellar Objects, ApJ 518, 848–858.

    Article  ADS  Google Scholar 

  • Ilgner M., Henning Th., Markwick A.J., Millar T.J., 2003, The inXuence of transport processes on the chemical evolution in steady accretion disk Xows, A&A, in press.

    Google Scholar 

  • Irvine W.M., Crovisier J., Fegley B., Mumma M.J., 2000, Comets: A Link Between Interstellar and Nebular Chemistry, in Protostars and Planets IV (eds. Mannings V., Boss A.P., Russell S.S.), pp. 1159–1200. University of Arizona Press, Tucson.

    Google Scholar 

  • Kastner J.H., Zuckerman B., Weintraub D.A., Forveille T., 1997, X-ray and molecular emission from the nearest region of recent star formation, Science 277, 67–71.

    Article  ADS  Google Scholar 

  • Kawakita H., Watanabe J.-I., Furusho R., Fuse T., 2004, Ortho-to-para ratios of cometary water and ammonia, Formation of Cometary Material, 25th Meeting of the IAU, Joint Discussion 14, Highlights of Astronomy, in press.

    Google Scholar 

  • Kessler J.E., Qi C., Blake G.A., 2002, Millimeter observations of HDO and DCN in the circumstellar disks of protostars LkCa 15, MWC 480 and HD 163296, in Chemistry as a Diagnostic of Star Formation, ed. C.L. Curry, M.I. Fich (NRC press), in press.

    Google Scholar 

  • Lada C.J., Shu F.H., 1990, The formation of sunlike stars, Science 248, 564–572.

    ADS  Google Scholar 

  • Langer W.D., Graedel T.E., Frerking M.A., Armentrout P.B., 1984, Carbon and oxygen isotope fractionation in dense interstellar clouds, ApJ 277, 581–604.

    Article  ADS  Google Scholar 

  • Larson R.B., 2003, The Physics of Star Formation, Rep. Prog. Phys. 66, 1651–1701.

    Article  ADS  Google Scholar 

  • Larson R.B., 1969, Numerical calculations of the dynamics of collapsing protostar, MNRAS 145, 271–295.

    ADS  Google Scholar 

  • Lee T., Papanastassiou D.A., Wasserburg G.J., 1977, Aluminium-26 in the early solar system — Fossil or fuel, ApJ 211, L107–L110.

    Article  ADS  Google Scholar 

  • Le Teuff Y.-H., Millar T.J., Markwick A.J., 2000, The UMIST database for astrochemistry 1999, A&AS 146, 157–168.

    ADS  Google Scholar 

  • Loinard L., Castets A., Ceccarelli C., Tielens A.G.G.M., Faur, A., Caux, E., Duvert G., 2000, The enormous abundance of D2CO in IRAS 16293–2422, A&A 359, 1169–1174.

    ADS  Google Scholar 

  • Lunine J.I., 1997, Physics and Chemistry of the Solar Nebula, Orig. Life Evol. Biosph. 27, 205–224.

    Article  ADS  Google Scholar 

  • Lunine J.I., Engel S., Rizk B., Horanyi M., 1991, Sublimation and reformation of icy grains in the primitive solar nebula, Icarus 94, 333–344.

    Article  ADS  Google Scholar 

  • Lynden-Bell D., Pringle J., 1974, The evolution of viscous discs and the origin of the nebula variables, MNRAS 168, 603–637.

    ADS  Google Scholar 

  • Lyons J.R., Young E.D., 2003, Towards an evaluation of self-shielding at the X-point as the origin of the oxygen isotope anomaly in CAIs, Lunar & Planetary Science XXXIV, 1981.

    Google Scholar 

  • Mac Low M.-M., Klessen R.S., 2003, Control of star formation by supersonic turbulence, Rev. Mod. Phys., in press.

    Google Scholar 

  • Mahoney W.A., Ling J.C., Wheaton W.A., Jacobson A.S., 1984, HEAO 3 discovery of Al-26 in the interstellar medium, ApJ 286, 578–585.

    Article  ADS  Google Scholar 

  • Markwick A.J., Charnley S.B., 2004, Disk Chemistry and Cometary Composition, Formation of Cometary Material, 25th Meeting of the IAU, Joint Discussion 14, Highlights of Astronomy, in press.

    Google Scholar 

  • Markwick A.J., Ilgner M., Millar T.J., Henning Th., 2002, Molecular distributions in the inner regions of protostellar disks, A&A 385, 632–646.

    Article  ADS  Google Scholar 

  • Markwick A.J., Charnley S.B., Millar T.J., 2001, Deuterium fractionation along the TMC-1 ridge, A&A 376, 1054–1063.

    Article  ADS  Google Scholar 

  • McEwan M.J., Scott G.B.I., Adams N.G., Babcock L.M., Terzieva R, Herbst E., 1999, ApJ, New H and H 2 reactions with small hydrocarbon ions and their roles in benzene synthesis in dense interstellar clouds, ApJ, 513, 287–293.

    Article  ADS  Google Scholar 

  • McKee C.F., Zweibel E.G., Goodman A.A., Heiles C., 1993, Magnetic Fields in Star Forming Regions — Theory, in Protostars and Planets III, eds. Levy E.H., Lunine J.I., University of Arizona Press. Tuscon. p 327.

    Google Scholar 

  • Messenger S., 2002, Deuterium enrichments in interplanetary dust, Planetary & Space Science 50, 1221–1225.

    ADS  Google Scholar 

  • Messenger S., 2000, IdentiWcation of molecular-cloud material in interplanetary dust particles, Nature 404, 968–971.

    Article  ADS  Google Scholar 

  • Messenger S., Amari S., Gao X., Walker R.M., Clemett S.J., Chillier X.D.F., Zare R.N., Lewis R.S., 1998, Indigenous polycyclic aromatic hydrocarbons in circumstellar graphite grains from primitive meteorites, ApJ 502, 284–295.

    Article  ADS  Google Scholar 

  • Millar T.J., Nomura H., Markwick A.J., 2003, Two-dimensional models of protoplanetary disk chemistry, Ap&SS 285, 761–768.

    ADS  Google Scholar 

  • Millar T.J, Roberts H., Markwick A.J., Charnley S.B., 2000, The role of H 2 D + in the deuteration of interstellar molecules, Phil. Trans. R. Soc. Lond. A 358, 2535–2547.

    ADS  Google Scholar 

  • Millar T.J., Farqhuar P.R.A., Willacy K., 1997, The UMIST Database for Astrochemistry 1995, A&AS 121, 139–185.

    ADS  Google Scholar 

  • Mitchell G.F., 1984, EVects of shocks on the molecular composition of a dense interstellar cloud, ApJS 54, 81–101.

    Article  ADS  Google Scholar 

  • MorWll G.E., Volk H.J., 1984, Transport of dust and vapor and chemical fractionation in the early protosolar cloud, ApJ 287, 371–395.

    ADS  Google Scholar 

  • Morgan W.A., Jr., Feigelson E.D., Wang H., Frenklach M., 1991, A new mechanism for the formation of meteoritic kerogen-like material, Science, 252, 109–112.

    ADS  Google Scholar 

  • Najita J., Bergin E.A., Ullom J.N., 2001, X-Ray Desorption of Molecules from Grains in Protoplanetary Disks, ApJ 561, 880–889.

    Article  ADS  Google Scholar 

  • Naraoka H., Shimoyama A., Harada K., 2000, Isotopic evidence from an Antarctic carbonaceous chrondrite for two reaction pathways of extraterrestrial PAH formation, Earth Planet. Sci. Lett. 184, 1–7.

    Article  ADS  Google Scholar 

  • Neufeld D., Hollenbach D.J., 1994, Dense molecular shocks and accretion onto protostellar disks, ApJ 428, 170–185.

    Article  ADS  Google Scholar 

  • Nomura H., 2002, Structure and Instabilities of an Irradiated Viscous Protoplanetary Disk, ApJ 567, 587–595.

    Article  ADS  Google Scholar 

  • O’D Alexander C.M., Boss A.P., Carlson R.W., 2001, The Early Evolution of the Inner Solar System: A Meteoritic Perspective, Science 293, 64–68.

    ADS  Google Scholar 

  • O’D Alexander C.M., Russell S.S., Arden W., Ash R.D., Grady M., Pillinger C.T., 1998, The origin of chrondritic macromolecular organic matter: a carbon and nitrogen isotope study, Meteoritics Planet Sci., 33, 603.

    ADS  Google Scholar 

  • Oró J., 1961, Comets and the formation of biochemical compounds on the primitive Earth, Nature 190, 389–390.

    ADS  Google Scholar 

  • Parise B., Ceccarelli C., Tielens A.G.G.M., Herbst E., LeXoch B., Caux E., Castets A., Mukhopadhyay I., Pagani L., Loinard L., 2002, Detection of doubly-deuterated methanol in the solar-type protostar IRAS 16293–2422, A&A 393, L49–L53.

    Article  ADS  Google Scholar 

  • Penston M.V., 1969, Dynamics of self-gravitating gaseous spheres III. Analytical results in the free-fall of isothermal cases., MNRAS 144, 425–448.

    ADS  Google Scholar 

  • Pizzarello S., Huang Y., Fuller M., 2003, The carbon isotopic distribution of Murchinson amino acids, Lunar & Planetary Science XXXIV, 1036.

    Google Scholar 

  • Prasad S.S., Huntress W.T., 1980, A model for gas phase chemistry in interstellar clouds. I &ndash-The basic model, library of chemical reactions, and chemistry among C, N, and O compounds, ApJS 43, 1–35.

    Article  ADS  Google Scholar 

  • Qi C., 2001, PhD Thesis, California Institute of Science and Technology, Pasadena, California.

    Google Scholar 

  • Roberts H., Herbst E., Millar T.J., 2003, Enhanced Deuterium Fractionation in Dense Interstellar Cores Resulting from Multiply DeuteratedH +3 , ApJ 591, L41–44.

    Article  ADS  Google Scholar 

  • Rodgers S.D., Charnley S.B., 2004, Interstellar diazenylium recombination and nitrogen isotopic fractionation, MNRAS., submitted.

    Google Scholar 

  • Rodgers S.D., Charnley S.B., 2003, Chemical Evolution in Protostellar Envelopes — Cocoon Chemistry, ApJ 585, 355–371.

    Article  ADS  Google Scholar 

  • Ruden S.P., Pollack J.B., 1991, The dynamical evolution of the protosolar nebula, ApJ 375, 740–760.

    Article  ADS  Google Scholar 

  • Sandford S.A., Bernstein M.P., Dworkin J.P., 2001, Assessment of the interstellar processes leading to deuterium enrichment in meteoritic organics, Meteoritics Planet Sci., 36, 1117–1133.

    ADS  Google Scholar 

  • Sephton M.A., Verchovsky A.B., Bland P., Gilmour I., Grady M.M., Wright I.P., 2003, Investigating the variations in carbon and nitrogen isotopes in carbonaceous chrondrites, Geochimica et Cosmochimica Acta 67, 2093–2108.

    Article  ADS  Google Scholar 

  • Sephton M.A., 2002, Organic compounds in carbonaceous meteorites, Nat. Prod. Rep. 19, 292–311.

    Article  Google Scholar 

  • Sephton M.A., Gilmour I., 2000, Aromatic moieties in meteorites: relics of interstellar grain processes?, ApJ 540, 588–591.

    Article  ADS  Google Scholar 

  • Sephton M.A., Pillinger C.T., Gilmour I., 1998, δ 13 Cof free and macromolecular aromatic structures in the Murchison meteorite, Geochimica et Cosmochimica Acta 62, 1821–1828.

    Article  ADS  Google Scholar 

  • Shu F.H., Lizano S., Adams F.C., 1987, Star formation in molecular clouds — Observation and theory, Ann. Rev. Astron. Astrophys. 25, 23–81.

    Article  ADS  Google Scholar 

  • Shu F.H., 1977, Self-similar collapse of isothermal spheres and star formation, ApJ 214, 488–497.

    Article  ADS  Google Scholar 

  • Simonelli D.P., Pollack J.B., McKay C.P., 1997, Radiative Heating of Interstellar Grains Falling toward the Solar Nebula: 1-D Diffusion Calculations, Icarus 125, 261–280.

    Article  ADS  Google Scholar 

  • Stevenson D.J., 1990, Chemical heterogeneity and imperfect mixing in the solar nebula, ApJ 348, 730–737.

    Article  ADS  Google Scholar 

  • Terebey S., Shu F.H., Cassen P., 1984, The collapse of the cores of slowly rotating isothermal clouds, ApJ 286, 529–551.

    Article  ADS  Google Scholar 

  • Terzieva R., Herbst E., 2000, The possibility of nitrogen isotopic fractionation in interstellar clouds, MNRAS 317, 563–568.

    Article  ADS  Google Scholar 

  • Terzieva R., Herbst E., 1998, The Sensitivity of Gas Phase Chemical Models of Interstellar Clouds to C and O Elemental Abundances and to a New Formation Mechanism for Ammonia, ApJ 501, 207-.

    Article  ADS  Google Scholar 

  • Thiemens M.H., 1999, Mass-Independent Isotope EVects in Planetary Atmospheres and the Early Solar System, Science 283, 341–345.

    Article  ADS  Google Scholar 

  • Tielens A.G.G.M., 1983, Surface chemistry of deuterated molecules, A&A 119, 177–184.

    ADS  Google Scholar 

  • Umebayashi T., Nakano T., 1981, Fluxes of Energetic Particles and the Ionization Rate in Very Dense Interstellar Clouds, PASJ 33, 617–636.

    ADS  Google Scholar 

  • van der Tak F.F.S., Schilke P., Muüller, H.S.P., Lis D.C., Phillips T.G., Gerin M., RoueV E., 2002, Triply deuterated ammonia in NGC 1333, A&A 388, L53–L56.

    ADS  Google Scholar 

  • van Dishoeck E.F., Thi W.-F., van Zadelhoff G.-H., 2003, Detection of DCO + in a circumstellar disk, A&A 400, L1–L4.

    ADS  Google Scholar 

  • van Dishoeck E.F., Blake G.A., 1998, Chemical Evolution of Star-Forming Regions, Ann. Rev. Astron. Astrophys. 36, 317–368.

    ADS  Google Scholar 

  • van ZadelhoV G.-J., Aikawa Y., Hogerheijde M.R., van Dishoeck E.F., 2003, Axisymmetric models of ultraviolet radiative transfer with applications to circumstellar disk chemistry, A&A 397, 789–802.

    ADS  Google Scholar 

  • van Zadelhoff G.-J., van Dishoeck E.F., Thi W.-F., Blake G.A., 2001, Submillimeter lines from circumstellar disks around pre-main sequence stars, A&A 377, 566–580.

    ADS  Google Scholar 

  • Vastel C., Phillips T.G., Ceccarelli C., Pearson J., 2003, First Detection of Doubly Deuterated Hydrogen Sulfide, ApJ 593, L97–100.

    Article  ADS  Google Scholar 

  • Wehrstedt M., Gail H.-P., 2002, Radial mixing in protoplanetary accretion disks. II. Time dependent disk models with annealing and carbon combustion, A&A 385, 181–204.

    Article  ADS  Google Scholar 

  • Westley M.S., Baragiola R.A., Johnson R.E., Baratta G.A., 1995, Photodesorption from Low-Temperature Water Ice in Interstellar and Circumsolar Grains, Nature 373, 405.

    Article  ADS  Google Scholar 

  • Wiens R.C., Huss G.R., Burnett D.S., 1999, The solar oxygen-isotopic composition: Predictions and implications for solar nebula processes, Meteoritics Planet Sci., 34, 99–107.

    ADS  Google Scholar 

  • Willacy K., Langer W.D., 2000, The Importance of Photoprocessing in Protoplanetary Disks, ApJ 544, 903–920.

    Article  ADS  Google Scholar 

  • Willacy K., Klahr H.H., Millar, T.J., Henning, Th., 1998, Gas and grain chemistry in a protoplanetary disk, A&A 338, 995–1005.

    ADS  Google Scholar 

  • Wooden D.H., 2002, Comet Grains: Their IR Emission and Their Relation to ISM Grains, Earth, Moon & Planets 89, 247–287.

    ADS  Google Scholar 

  • Wootten H.A., ed., 2001, Science with the Atacama Large Millimeter Array, Astron. Soc. Pac. 365, San Francisco.

    Google Scholar 

  • Young E.D., Lyons J.R, 2003, CO self shielding in the outer solar nebula: an astronomical explanation for the oxygen isotope slope-1 line, Lunar & Planetary Science XXXIV, 1923.

    Google Scholar 

  • Zhou S., 1992, In search of evidence for protostellar collapse — A systematic study of line formation in low-mass dense cores, ApJ 394, 204–216.

    Article  ADS  Google Scholar 

  • Zinner E., 1998, Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites, Annu. Rev. Earth Planet. Sci. 26, 147–188.

    Article  ADS  Google Scholar 

  • Zuckerman B., Evans N.J., 1974, Models of massive molecular clouds, ApJ, 192, L149–L152.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Markwickan, A., Charnley, S. (2004). Chemistry of Protoplanetary Disks. In: Ehrenfreund, P., et al. Astrobiology: Future Perspectives. Astrophysics and Space Science Library, vol 305. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2305-7_3

Download citation

Publish with us

Policies and ethics