Skip to main content

Higher homotopies and Maurer-Cartan algebras: Quasi-Lie-Rinehart, Gerstenhaber, and Batalin-Vilkovisky algebras

  • Chapter
The Breadth of Symplectic and Poisson Geometry

Part of the book series: Progress in Mathematics ((PM,volume 232))

Abstract

Higher homotopy generalizations of Lie-Rinehart algebras, Gerstenhaber, and Batalin-Vilkovisky algebras are explored. These are defined in terms of various antisymmetric bilinear operations satisfying weakened versions of the Jacobi identity, as well as in terms of operations involving more than two variables of the Lie triple systems kind. A basic tool is the Maurer-Cartan algebra—the algebra of alternating forms on a vector space so that Lie brackets correspond to square zero derivations of this algebra—and multialgebra generalizations thereof. The higher homotopies are phrased in terms of these multialgebras. Applications to foliations are discussed: objects which serve as replacements for the Lie algebra of vector fields on the “space of leaves” and for the algebra of multivector fields are developed, and the spectral sequence of a foliation is shown to arise as a special case of a more general spectral sequence including the Hodge-de Rham spectral sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akman, F. [1997], On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra, 120, 105–141.

    Article  MATH  MathSciNet  Google Scholar 

  • Almeida, R. and Molino, P. [1985], Suites d’Atiyah et feuilletages transversalement complets, C. R. Acad. Sci. Paris I, 300, 13–15.

    MATH  MathSciNet  Google Scholar 

  • Atiyah, M. F. [1957], Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., 85, 181–207.

    Article  MATH  MathSciNet  Google Scholar 

  • Bangoura, M. [2003], Quasi-bigèbres de Lie et algèbres et quasi-Batalin-Vilkovisky différentielles, Comm. Algebra, 31(1), 29–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Bangoura, M. [2002], Algèbres quasi-Gerstenhaber différentielles, Prépublications 2002-16, Centre de Mathématiques, École Polytechnique, Palaiseau, France.

    Google Scholar 

  • Batalin, I.A. and Vilkovisky, G. S. [1983], Quantization of gauge theories with linearly dependent generators, Phys. Rev. D, 28, 2567–2582.

    Article  MathSciNet  Google Scholar 

  • Batalin, I. A. and Vilkovisky, G. S. [1984], Closure of the gauge algebra, generalized Lie equations and rules, Nucl. Phys. B, 234, 106–124.

    Article  MathSciNet  Google Scholar 

  • Batalin, I. A. and Vilkovisky, G. S. [1985], Existence theorem for gauge algebra, J. Math. Phys., 26, 172–184.

    Article  MathSciNet  Google Scholar 

  • Cartan, É. [1927], La géométrie des groupes de transformations, J. Math. Pures Appl., 6, 1–119.

    MathSciNet  Google Scholar 

  • Cartan, É. [1929], Sur les invariants intégraux de certains espaces homogènes clos et les propriétés topologiques de ces espaces, Ann. Soc. Pol. Math., 8, 181–225.

    Google Scholar 

  • Drinfeld, V. G. [1990], Quasi-Hopf algebras, Leningrad Math. J., 1, 1419–1457.

    MathSciNet  Google Scholar 

  • Frölicher, A. and Nijenhuis, A. [1956], Theory of vector-valued differential forms, Part I: Derivations in the graded ring of differential forms, Indagationes Math., 18, 338–359.

    Google Scholar 

  • Gerstenhaber, M. [1963], The cohomology structure of an associative ring, Ann. Math., 78, 267–288.

    Article  MathSciNet  Google Scholar 

  • Getzler, E. [1995], Manin pairs and topological conformal field theory, Ann. Phys., 237, 161–201.

    Article  MATH  MathSciNet  Google Scholar 

  • Heller, A. [1954], Homological resolutions of complexes with operators, Ann. Math., 60, 283–303.

    Article  MathSciNet  Google Scholar 

  • Huebschmann, J. [1989a], Perturbation theory and free resolutions for nilpotent groups of class 2, J. Algebra, 126, 348–399.

    Article  MATH  MathSciNet  Google Scholar 

  • Huebschmann, J. [1989b], Cohomology of nilpotent groups of class 2, J. Algebra, 126, 400–450.

    Article  MATH  MathSciNet  Google Scholar 

  • Huebschmann, J. [1989c], The mod p cohomology rings of metacyclic groups, J. Pure Appl. Algebra, 60, 53–105.

    Article  MATH  MathSciNet  Google Scholar 

  • Huebschmann, J. [1990], Poisson cohomology and quantization, J. Reine Angew. Math., 408, 57–113.

    MATH  MathSciNet  Google Scholar 

  • Huebschmann, J. [1991a], On the quantization of Poisson algebras, in P. Donato, C. Duval, J. Elhadad, and G. M. Tuynman, eds., Symplectic Geometry and Mathematical Physics: Actes du colloque en l’honneur de Jean-Marie Souriau, Progress in Mathematics, Vol. 99, Birkhäuser, Boston, 204–233.

    Google Scholar 

  • Huebschmann, J. [1991b], Cohomology of metacyclic groups, Trans. Amer. Math. Soc., 328, 1–72.

    Article  MATH  MathSciNet  Google Scholar 

  • Huebschmann, J. [1998a], Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier, 48, 425–440.

    MATH  MathSciNet  Google Scholar 

  • Huebschmann, J. [1998b], Twilled Lie-Rinehart algebras and differential Batalin-Vilkovisky algebras, math.DG/9811069.

    Google Scholar 

  • Huebschmann, J. [1999a], Extensions of Lie-Rinehart algebras and the Chern-Weil construction, in Festschrift in Honor of J. Stasheff’s 60th birthday, Contemporary Mathematics, Vol. 227, American Mathematical Society, Providence, RI, 145–176.

    Google Scholar 

  • Huebschmann, J. [1999b], Duality for Lie-Rinehart algebras and the modular class, J. Reine Angew. Math., 510, 103–159.

    MATH  MathSciNet  Google Scholar 

  • Huebschmann, J. [1999c], Berikashvili’s functor \( \mathcal{D} \) and the deformation equation, in Festschrift in Honor of N. Berikashvili’s 70th Birthday, Proceedings of the A. Razmadze Mathematical Institute, Vol. 119, A. Razmadze Mathematical Institute, Tbilisi, 59–72.

    Google Scholar 

  • Huebschmann, J. [2000], Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras, in Poisson Geometry, Banach Center Publications, Vol. 51, Polish Scientific Publishers PWN, Warsaw, 87–102.

    Google Scholar 

  • Huebschmann, J. [2001], Kähler spaces, nilpotent orbits, and singular reduction, Mem. Amer. Math. Soc., to appear; math.dg/0104213.

    Google Scholar 

  • Huebschmann, J. [2002], Kähler quantization and reduction, J. Reine Angew. Math., to appear; math.SG/0207166.

    Google Scholar 

  • Huebschmann, J. [2003], Lie-Rinehart algebras, descent, and quantization, Fields Inst. Comm., to appear; math.SG/0303016.

    Google Scholar 

  • Huebschmann, J. and Kadeishvili, T. [1991], Small models for chain algebras, Math. Z., 207, 245–280.

    Article  MATH  MathSciNet  Google Scholar 

  • Huebschmann, J. and Stasheff, J. D. [2002], Formal solution of the master equation via HPT and deformation theory, Forum Math., 14, 847–868.

    Article  MATH  MathSciNet  Google Scholar 

  • Keller, B. [2001], Introduction to A -algebras and modules, Homology Homotopy Appl., 3, 1–35; addendum, Homology Homotopy Appl., 4 (2002), 25–28.

    MATH  MathSciNet  Google Scholar 

  • Kikkawa, M. [1975], Geometry of homogeneous Lie loops, Hiroshima Math. J., 5, 141–179.

    MATH  MathSciNet  Google Scholar 

  • Kinyon, M. K. and Weinstein, A. [2001], Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, Amer. J. Math., 123, 525–550.

    Article  MATH  MathSciNet  Google Scholar 

  • Kjeseth, L. J. [2001], Homotopy Rinehart cohomology of homotopy Lie-Rinehart pairs, Homology Homotopy Appl., 3, 139–163.

    MATH  MathSciNet  Google Scholar 

  • Kosmann-Schwarzbach, Y. [1992], Jacobian quasi-bialgebras and quasi-Poisson Lie groups, in M. Gotay, J. E. Marsden, and V. Moncrief, eds., Mathematical Aspects of Classical Field Theory, Contemporary Mathematics, Vol. 132, American Mathematical Society, Providence, RI, 132, 459–489.

    Google Scholar 

  • Kosmann-Schwarzbach, Y. [1995], Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math., 41, 153–165.

    Article  MATH  MathSciNet  Google Scholar 

  • Kosmann-Schwarzbach, Y. [1996], From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier, 46, 1243–1274.

    MATH  MathSciNet  Google Scholar 

  • Kosmann-Schwarzbach, Y. [2005], Quasi, twisted, and all that... in Poisson geometry and Lie algebroid theory, in J. E. Marsden and T. S. Ratiu, eds., The Breadth of Symplectic and Poisson Geometry: Festschrift in Honor of Alan Weinstein (this volume), Progress in Mathematics, Vol. 232, Birkhäuser, Boston, 363–390.

    Google Scholar 

  • Koszul, J. L. [1985], Crochet de Schouten-Nijenhuis et cohomologie, in E. Cartan et les Mathématiques d’aujourd’hui (Lyon, 25–29 Juin, 1984), Astérisque, Hors-Série, Société Mathématique de France, Paris, 251–271.

    Google Scholar 

  • Kravchenko, O. [2000], Deformations of Batalin-Vilkovisky algebras, in Poisson Geometry, Banach Center Publications, Vol. 51, Polish Scientific Publishers PWN, Warsaw, 131–139.

    Google Scholar 

  • Liulevicius, A. [1963] A theorem in homological algebra and stable homotopy of projective spaces, Trans. Amer. Math. Soc., 109, 540–552.

    Article  MATH  MathSciNet  Google Scholar 

  • Mackenzie, K. [1987] Lie Groupoids and Lie Algebroids in Differential Geometry, London Mathematical Society Lecture Notes, Vol. 124, Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Manin, Yu. I. [1999], Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, Colloquium Publications, Vol. 47, American Mathematical Society, Providence, RI.

    MATH  Google Scholar 

  • Molino, P. [1988], Riemannian Foliations, Progress in Mathematics, Vol. 73, Birkhäuser, Boston, Basel, Berlin.

    MATH  Google Scholar 

  • Nijenhuis, A. [1955], Jacobi-type identities for bilinear differential concomitants of tensor fields I, Indagationes Math., 17, 390–403.

    MathSciNet  Google Scholar 

  • Nomizu, K. [1954], Invariant affine connections on homogeneous spaces, Amer. J. Math., 76, 33–65.

    Article  MATH  MathSciNet  Google Scholar 

  • Palais, R. S. [1961], The cohomology of Lie rings, in Proceedings of Symposia in Pure Mathematics III, American Mathematical Society, Providence, RI, 130–137.

    Google Scholar 

  • Reinhart, B. L. [1959], Foliated manifolds with bundle-like metrics, Ann. Math., 69, 119–132.

    Article  MathSciNet  Google Scholar 

  • Rinehart, G. [1963], Differential forms for general commutative algebras, Trans. Amer. Math. Soc., 108, 195–222.

    Article  MATH  MathSciNet  Google Scholar 

  • Roytenberg, D. [2002], Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys., 61, 123–137.

    Article  MATH  MathSciNet  Google Scholar 

  • Roytenberg, D. and Weinstein, A. [1998], Courant algebroids and strongly homotopy Lie algebras, Lett. Math. Phys., 46, 81–93.

    Article  MATH  MathSciNet  Google Scholar 

  • Sabinin, L. V. and Mikheev, P. O. [1988], On the infinitesimal theory of local analytic loops, Soviet Math. Dokl., 36, 545–548.

    MATH  MathSciNet  Google Scholar 

  • Sarkharia, K. S. [1974], The de Rham Cohomology of Foliated Manifolds, Ph.D. thesis, State University of New York at Stony Brook, Stony Brook, NY.

    Google Scholar 

  • Sarkharia, K. S. [1984], Non-degenerescence of some spectral sequences, Ann. Inst. Fourier, 34, 39–46.

    Google Scholar 

  • Stasheff, J. D. [1997], Deformation theory and the Batalin-Vilkovisky master equation, in D. Sternheimer, J. Rawnsley, and S. Gutt, eds., Deformation Theory and Symplectic Geometry: Proceedings of the Ascona Meeting, June 1996, Mathematical Physics Studies, Vol. 20, Kluwer Academic Publishers, Dordrecht, the Netherlands, 271–284.

    Google Scholar 

  • Stasheff, J. D. [2005], Poisson homotopy algebra: An idiosyncratic survey of homotopy algebraic topics related to Alan’s interests, in J. E. Marsden and T. S. Ratiu, eds., The Breadth of Symplectic and Poisson Geometry: Festschrift in Honor of Alan Weinstein (this volume), Progress in Mathematics, Vol. 232, Birkhäuser, Boston, 583–602.

    Google Scholar 

  • Van Est, W. T. [1989], Algèbres de Maurer-Cartan et holonomie, Ann. Fac. Sci. Toulouse Math., 5(suppl.), 93–134.

    Google Scholar 

  • Wall, C. T. C. [1961], Resolutions for extensions of groups, Proc. Cambridge Philos. Soc., 57, 251–255.

    Article  MATH  MathSciNet  Google Scholar 

  • Weinstein, A. [2000], Omni-Lie algebras, in Microlocal Analysis of the Schrödinger Equation and Related Topics (Kyoto 1999), Sûrikaisekikenkyûsho Kôkyûroku (RIMS), Vol. 1176, RIMS, Kyoto University, Kyoto, 95–102.

    Google Scholar 

  • Yamaguti, K. [1957–1958], On the Lie triple systems and its generalizations, J. Sci. Hiroshima Univ. Ser. A, 21, 155–160.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Alan Weinstein on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Huebschmann, J. (2005). Higher homotopies and Maurer-Cartan algebras: Quasi-Lie-Rinehart, Gerstenhaber, and Batalin-Vilkovisky algebras. In: Marsden, J.E., Ratiu, T.S. (eds) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol 232. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4419-9_9

Download citation

Publish with us

Policies and ethics