Skip to main content

Recent Progress in Inflammatory Bowel Disease Genetics

  • Chapter
Immune Mechanisms in Inflammatory Bowel Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 579))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411:603–6.

    Article  PubMed  CAS  Google Scholar 

  2. Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411:599–603.

    Article  PubMed  CAS  Google Scholar 

  3. Inohara N, Ogura Y, Fontalba A et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’ disease. J Biol Chem 2003; 278:5509–12.

    Article  PubMed  CAS  Google Scholar 

  4. Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003.

    Google Scholar 

  5. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol 2002; 20:495–549.

    Article  PubMed  CAS  Google Scholar 

  6. Loftus Jr EV, Sandborn WJ. Epidemiology of inflammatory bowel disease. Gastroenterol Clin North Am 2002; 31:1–20.

    Article  PubMed  Google Scholar 

  7. Kurata JH, Kantor-Fish S, Frankl H et al. Crohn’s disease among ethnic groups in a large health maintenance organization. Gastroenterology 1992; 102:1940–8.

    PubMed  CAS  Google Scholar 

  8. Ogunbi SO, Ransom JA, Sullivan K et al. Inflammatory bowel disease in African-American children living in Georgia. J Pediatr 1998; 133:103–7.

    Article  PubMed  CAS  Google Scholar 

  9. Farmer RG, Michener WM, Mortimer EA. Studies of family history among patients with inflammatory bowel disease. Clin Gastroenterol 1980; 9:271–7.

    PubMed  CAS  Google Scholar 

  10. Monsen U, Bernell O, Johansson C et al. Prevalence of inflammatory bowel disease among relatives of patients with Crohn’s disease. Scand J Gastroenterol 1991; 26:302–6.

    Article  PubMed  CAS  Google Scholar 

  11. Monsen U, Brostrom O, Nordenvall B et al. Prevalence of inflammatory bowel disease among relatives of patients with ulcerative colitis. Scand J Gastroenterol 1987; 22:214–8.

    Article  PubMed  CAS  Google Scholar 

  12. Russel MG, Pastoor CJ, Janssen KM et al. Familial aggregation of inflammatory bowel disease: A population-based study in South Limburg, The Netherlands. The South Limburg IBD Study Group. Scand J Gastroenterol Suppl 1997; 223:88–91.

    PubMed  CAS  Google Scholar 

  13. Orholm M, Munkholm P, Langholz E et al. Familial occurrence of inflammatory bowel disease. N Engl J Med 1991; 324:84–8.

    Article  PubMed  CAS  Google Scholar 

  14. Peeters M, Nevens H, Baert F et al. Familial aggregation in Crohn’s disease: Increased age-adjusted risk and concordance in clinical characteristics. Gastroenterology 1996; 111:597–603.

    Article  PubMed  CAS  Google Scholar 

  15. Giallourakis C, Stoll M, Miller K et al. IBD5 is a general risk factor for inflammatory bowel disease: Replication of association with Crohn disease and identification of a novel association with ulcerative colitis. Am J Hum Genet 2003; 73:205–11.

    Article  PubMed  CAS  Google Scholar 

  16. Rioux JD, Daly MJ, Silverberg MS et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29:223–8.

    Article  PubMed  CAS  Google Scholar 

  17. Subhani JMS, Ounder RE, Wakefield AJ. Concordance rates oftwins and siblings in inflammatory bowel disease. Gut 1998; 42(Suppl 1):A40.

    Google Scholar 

  18. Thompson NP, Dirscoll R, Pounder RE et al. Genetics versus environment in inflammatory bowel disease: Results of a British twin study. Bmj 1996; 312:95–6.

    Article  PubMed  CAS  Google Scholar 

  19. Tysk C, Lindberg E, Jarnerot G et al. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 1988; 29:990–6.

    Article  PubMed  CAS  Google Scholar 

  20. Inohara N, Nunez G. NODs: Intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 2003; 3:371–82.

    Article  PubMed  CAS  Google Scholar 

  21. Sachidanandam R, Weissman D, Schmidt SC et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409:928–33.

    Article  PubMed  CAS  Google Scholar 

  22. Chakravarti A. Population genetics—making sense out of sequence. Nat Genet 1999; 21:56–60.

    Article  PubMed  CAS  Google Scholar 

  23. Daly MJ, Rioux JD, Schaffner SF et al. High-resolution haplotype structure in the human genome. Nat Genet 2001; 29:229–32.

    Article  PubMed  CAS  Google Scholar 

  24. Medzhitov R, Janeway Jr C. Innate immunity. N Engl J Med 2000; 343:338–44.

    Article  PubMed  CAS  Google Scholar 

  25. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265:2037–48.

    Article  PubMed  CAS  Google Scholar 

  26. Hugot JP, Laurent-Puig P, Gower-Rousseau C et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 1996; 379:821–3.

    Article  PubMed  CAS  Google Scholar 

  27. Cavanaugh JA, Callen DF, Wilson SR et al. Analysis of Australian Crohn’s disease pedigrees refines the localization for susceptibility to inflammatory bowel disease on chromosome 16. Ann Hum Genet 1998; 62:291–8.

    Article  PubMed  CAS  Google Scholar 

  28. Cavanaugh JA, Adams KE, Quak EJ et al. CARD15/NOD2 risk alleles in the development of Crohn’s disease in the Australian population. Ann Hum Genet 2003; 67:35–41.

    Article  PubMed  CAS  Google Scholar 

  29. Hampe J, Schreiber S, Shaw SH et al. A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am J Hum Genet 1999; 64:808–16.

    Article  PubMed  CAS  Google Scholar 

  30. Hampe J, Shaw SH, Saiz R et al. Linkage of inflammatory bowel disease to human chromsome 6p. Am J Hum Genet 1999; 65:1647–55.

    Article  PubMed  CAS  Google Scholar 

  31. Satsangi J, Parkes M, Louis E et al. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 1996; 14:199–202.

    Article  PubMed  CAS  Google Scholar 

  32. Parkes M, Barmada MM, Satsangi J et al. The IBD2 locus shows linkage heterogeneity between ulcerative colitis and Crohn disease. Am J Hum Genet 2000; 67:1605–10.

    Article  PubMed  CAS  Google Scholar 

  33. Ogura Y, Inohara N, Benito A et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 2001; 276:4812–8.

    Article  PubMed  CAS  Google Scholar 

  34. Inohara N, Koseki T, del Peso L et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 1999; 274:14560–7.

    Article  PubMed  CAS  Google Scholar 

  35. Gutierrez O, Pipaon C, Inohara N et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J Biol Chem 2002; 41701–5.

    Google Scholar 

  36. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197–216.

    Article  PubMed  CAS  Google Scholar 

  37. Thome M, Hofmann K, Burns K et al. Identification of CARDIAK, a RIP-like kinase that associates with caspase-1. Curr Biol 1998; 8:885–8.

    Article  PubMed  CAS  Google Scholar 

  38. Inohara N, del Peso L, Koseki T et al. RICK, a novel protein kinase containing a caspase recruitment domain, interacts with CLARP and regulates CD95-mediated apoptosis. J Biol Chem 1998; 273:12296–300.

    Article  PubMed  CAS  Google Scholar 

  39. McCarthy JV, Ni J, Dixit VM. RIP2 is a novel NF-kappaB-activating and cell death-inducing kinase. J Biol Chem 1998; 273:16968–75.

    Article  PubMed  CAS  Google Scholar 

  40. Inohara N, Koseki T, Lin J et al. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem 2000; 275:27823–31.

    PubMed  CAS  Google Scholar 

  41. Bonen DK, Ogura Y, Nicolae DL et al. Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology 2003; 124:140–6.

    Article  PubMed  CAS  Google Scholar 

  42. Sugimura K, Taylor KD, Lin YC et al. A novel NOD2/CARD15 haplotype conferring risk for crohn disease in Ashkenazi Jews. Am J Hum Genet 2003; 72:509–18.

    Article  PubMed  CAS  Google Scholar 

  43. Zhou Z, Lin XY, Akolkar PN et al. Variation at NOD2/CARD15 in familial and sporadic cases of Crohn’s disease in the Ashkenazi Jewish population. Am J Gastroenterol 2002; 97:3095–101.

    Article  PubMed  CAS  Google Scholar 

  44. Yamazaki K, Takazoe M, Tanaka T et al. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn’s disease. J Hum Genet 2002; 47:469–72.

    Article  PubMed  CAS  Google Scholar 

  45. Inoue N, Tamura K, Kinouchi Y et al. Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology 2002; 123:86–91.

    Article  PubMed  CAS  Google Scholar 

  46. Croucher PJ, Mascheretti S, Hampe J et al. Haplotype structure and association to Crohn’s disease of CARD15 mutations in two ethnically divergent populations. Eur J Hum Genet 2003; 11:6–16.

    Article  PubMed  CAS  Google Scholar 

  47. Bonen DK, Nicolae DL, Moran T et al. Racial differences in NOD2 variation: Characterization of NOD2 in african-americans with Crohn’s disease [Abstract 248]. Gastroenterology 2002; 122(Suppl):A-29.

    Google Scholar 

  48. Lesage S, Zouali H, Cezard JP et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 2002; 70:845–57.

    Article  PubMed  CAS  Google Scholar 

  49. Chamaillard M, Philpott D, Girardin SE et al. Gene-environment interaction modulated by allelic heterogeneity in inflammatory disease. Proc Natl Acad Sci USA 2003; 100:3455–60.

    Article  PubMed  CAS  Google Scholar 

  50. Maeda S, Hsu LC, Liu H et al. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 2005; 4:734–8.

    Article  Google Scholar 

  51. Hisamatsu T, Suzuki M, Reinecker HC et al. CARD15/NOD2 functions as an anti-bacterial factor in human intestinal epithelial cells. Gastroenterology 2003.

    Google Scholar 

  52. Lala S, Ogura Y, Osborne C et al. Crohn’s disease and the NOD2 gene: A role for paneth cells. Gastroenterology 2003; 125:47–57.

    Article  PubMed  CAS  Google Scholar 

  53. Ogura Y, Xin W, Smith E et al. Expression of NOD2 in paneth cells: A possible link to Crohn’s Ileitis. Gut, In press.

    Google Scholar 

  54. Kobayashi KS, Chamaillard M, Ogura Y et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005; 4:731–4.

    Article  Google Scholar 

  55. Ayabe T, Satchell DP, Wilson CL et al. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 2000; 1:113–8.

    Article  PubMed  CAS  Google Scholar 

  56. Rosenstiel P, Fantini M, Brautigam K et al. TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 2003; 124:1001–9.

    Article  PubMed  CAS  Google Scholar 

  57. Ahmad T, Satsangi J, McGovern D et al. Review article: The genetics of inflammatory bowel disease. Aliment Pharmacol Ther 2001; 15:731–48.

    Article  PubMed  CAS  Google Scholar 

  58. Cuthbert AP, Fisher SA, Mirza MM et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 2002; 122:867–74.

    Article  PubMed  CAS  Google Scholar 

  59. Brant SR, Picco MF, Achkar JP et al. Crohn’s disease: Role of NOD2/CARD15 gene mutations in clinical heterogeneity. Am J Hum Genet 2002; (Abstract) In press.

    Google Scholar 

  60. Mirza MM, Fisher SA, King K et al. Genetic evidence for interaction of the 5q31 cytokine locus and the CARD15 gene in Crohn disease. Am J Hum Genet 2003; 72:1018–22.

    Article  PubMed  CAS  Google Scholar 

  61. Peltekova VD, Wintle RF, Rubin LA et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004; 36:471–5.

    Article  PubMed  CAS  Google Scholar 

  62. Stokkers PC, Reitsma PH, Tytgat GN et al. HLA-DR and-DQ phenotypes in inflammatory bowel disease: A meta-analysis. Gut 1999; 45:395–401.

    Article  PubMed  CAS  Google Scholar 

  63. Ahmad T, Armuzzi A, Bunce M et al. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology 2002; 122:854–66.

    Article  PubMed  CAS  Google Scholar 

  64. Louis E, Michel V, Hugot JP et al. Early development of stricturing or penetrating pattern in Crohn’s disease is influenced by disease location, number of flares, and smoking but not by NOD2/CARD15 genotype. Gut 2003; 52:552–7.

    Article  PubMed  CAS  Google Scholar 

  65. Vermeire S, Louis E, Rutgeerts P et al. NOD2/CARD15 does not influence response to infliximab in Crohn’s disease. Gastroenterology 2002; 123:106–11.

    Article  PubMed  CAS  Google Scholar 

  66. Mascheretti S, Hampe J, Croucher PJ et al. Response to infliximab treatment in Crohn’s disease is not associated with mutations in the CARD15 (NOD2) gene: An analysis in 534 patients from two multicenter, prospective GCP-level trials. Pharmacogenetics 2002; 12:509–15.

    Article  PubMed  CAS  Google Scholar 

  67. Kontoyiannis D, Pasparakis M, Pizarro TT et al. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: Implications for joint and gut-associated immunopathologies. Immunity 1999; 10:387–98.

    Article  PubMed  CAS  Google Scholar 

  68. Choi KH, Chen CJ, Kriegler M et al. An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene. Cell 1988; 53:519–29.

    Article  PubMed  CAS  Google Scholar 

  69. Kim RB, Leake BF, Choo EF et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70:189–99.

    Article  PubMed  CAS  Google Scholar 

  70. Hoffmeyer S, Burk O, von Richter O et al. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97:3473–8.

    Article  PubMed  CAS  Google Scholar 

  71. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: Mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol 1998; 161:5733–44.

    PubMed  CAS  Google Scholar 

  72. Schinkel AH, Wagenaar E, van Deemter L et al. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96:1698–705.

    Article  PubMed  CAS  Google Scholar 

  73. Lown KS, Mayo RR, Leichtman AB et al. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997; 62:248–60.

    Article  PubMed  CAS  Google Scholar 

  74. Farrell RJ, Murphy A, Long A et al. High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology 2000; 118:279–88.

    Article  PubMed  CAS  Google Scholar 

  75. Zouali H, Lesage S, Merlin F et al. CARD4/NOD1 is not involved in inflammatory bowel disease. Gut 2003; 52:71–4.

    Article  PubMed  CAS  Google Scholar 

  76. Girardin SE, Boneca IG, Carneiro LA et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 2003; 300:1584–7.

    Article  PubMed  CAS  Google Scholar 

  77. Chamaillard M, Hashimoto M, Horie Y et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 2003; 4:702–7.

    Article  PubMed  CAS  Google Scholar 

  78. Duerr RH, Barmada MM, Zhang L et al. High-density genome scan in Crohn disease shows confirmed linkage to chromosome 14q11–12. Am J Hum Genet 2000; 66:1857–62.

    Article  PubMed  CAS  Google Scholar 

  79. Ma Y, Ohmen JD, Li Z et al. A genome-wide search identifies potential new susceptibility loci for Crohn’s disease. Inflamm Bowel Dis 1999; 5:271–8.

    Article  PubMed  CAS  Google Scholar 

  80. Rioux JD, Silverberg MS, Daly MJ et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 2000; 66:1863–70.

    Article  PubMed  CAS  Google Scholar 

  81. Cho JH, Nicolae DL, Gold LH et al. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: Evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci USA 1998; 95:7502–7.

    Article  PubMed  CAS  Google Scholar 

  82. Hampe J, Frenzel H, Mirza MM et al. Evidence for a NOD2-independent susceptibility locus for inflammatory bowel disease on chromosome 16p. Proc Natl Acad Sci USA 2002; 99:321–6.

    Article  PubMed  CAS  Google Scholar 

  83. Vermeire S, Wild G, Kocher K et al. CARD15 genetic variation in a Quebec population: Prevalence, genotype-phenotype relationship, and haplotype structure. Am J Hum Genet 2002; 71:74–83.

    Article  PubMed  CAS  Google Scholar 

  84. Helio T, Halme L, Lappalainen M et al. CARD15/NOD2 gene variants are associated with familially occurring and complicated forms of Crohn’s disease. Gut 2003; 52:558–62.

    Article  PubMed  CAS  Google Scholar 

  85. Bairead E, Harmon DL, Curtis AM et al. Association of NOD2 with Crohn’s disease in a homogenous Irish population. Eur J Hum Genet 2003; 11:237–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Cho, J.H. (2006). Recent Progress in Inflammatory Bowel Disease Genetics. In: Blumberg, R.S., Neurath, M.F. (eds) Immune Mechanisms in Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, vol 579. Springer, New York, NY. https://doi.org/10.1007/0-387-33778-4_3

Download citation

Publish with us

Policies and ethics