Skip to main content

Fluorescence Biosensors for Continuously Monitoring the Blood Glucose Level of Diabetic Patients

  • Chapter
Glucose Sensing

Abstract

Diabetes mellitus is increasing rapidly and will double in the next 15 years.1,2 In addition, diabetic patients have a mortality excess for cardiovascular disease up to 2.5-4 times more than non diabetic population.3,4 In the last years became evident a cluster of cardiovascular risk factors like hypertension, central obesity, dyslipidemia with low HDL-cholesterol and high triglycerides, impaired fibrinolysis, hypercoagulation and endothelial dysfunction that has been called metabolic syndrome.5 The underlying defect that shares all these alterations is insulin resistance with compensatory hyperinsulinemia that is associated with increased cardiovascular events and mortality.6,7 Patients with diabetes and/or metabolic syndrome must be treated aggressively about every risk factors to minimize the cardiovascular events. Hyperglycemia is clearly related to microvascular complication of diabetes: retinopathy, nephropathy and neuropathy, while for macrovascular complication other coexisting risk factors are important. Many studies have demonstrated that an intensive treatment of diabetes reduces the macro and microvascular complications and the best results are obtained when every risk factor is aggressively treated.8–10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. King, R.E. Aubert, V.H. Herman, Global burden of diabetes, 1995–2025: prevalence, numerical estimates and projection, Diabetes Care 21, 1414–1431 (1998).

    Article  Google Scholar 

  2. J.P. Boyle, A.A. Honeycutt, K.M. Narayan, T.J. Hoerger, L.S. Geiss, H. Chen, T.J. Thompson, Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the U.S., Diabetes Care 24, 1936–1940 (2001).

    Article  Google Scholar 

  3. R.N. Anderson, Deaths: leading causes for 2000, Natl. Vital. Stat. Rep. 16, 1–85 (2002).

    Google Scholar 

  4. L.S. Geiss, W.H. Herman, P.J. Smith, Mortality in non-insulin-dependent diabetes, in: National Diabetes Data Group: Diabetes in America. 2nd edition by NIH pub no. 95-1468 (Government Printing Office, Washington, DC 1995), pp. 233–257.

    Google Scholar 

  5. J.B. Meigs, Epidemiology of the metabolic syndrome Am. J. Manag. Care 8(11, Suppl 1), S283–S292 (2002).

    Google Scholar 

  6. S.I. McFarlane, M. Banerji, J.R. Sowers, Insulin resistance and cardiovascular disease. J. Clin. Endocrinol. Metab. 86, 713–718 (2001).

    Article  Google Scholar 

  7. Despres J.P., B. Lamarche, P. Mauriege, Cantin B., G.R. Dagenais, S. Moorjani, P.J. Lupien, Hyperinsulinemia as an independent risk factor for ischemic heart disease, N. Engl. J. Med. 334(15), 952–957 (1996).

    Article  Google Scholar 

  8. UK Prospective Diabetes Study (UKPDS) Group, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33), Lancet 352, 837–53 (1998).

    Article  Google Scholar 

  9. UK Prospective Diabetes Study Group, Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38, BMJ 317(7160), 703–13 (1998).

    Google Scholar 

  10. P. Gaede, P. Vedel, N. Larsen, G.V. Jensen, H.H. Parving, O. Pedersen, Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes, N. Engl. J. Med. 348(5), 383–93 (2003).

    Article  Google Scholar 

  11. The Diabetes Control and Complications Trial Research Group, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus, N. Engl. J. Med. 329(14), 977–86 (1993).

    Article  Google Scholar 

  12. Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, M. Shichiri, Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study, Diabetes Res. Clin. Pract., 28(2), 103–117 (1995).

    Article  Google Scholar 

  13. M. Muggeo, G. Verlato, E. Bonora, F. Ciani, P. Moghetti, R. Eastman, G. Crepaldi, R. de Marco, Long-term instability of fasting plasma glucose predicts mortality in elderly NIDDM patients: the Verona Diabetes Study, Diabetologia 38(6), 672–9 (1995).

    Article  Google Scholar 

  14. M. Muggeo, G. Zoppini, E. Bonora, E. Brun, R.C. Bonadonna, P. Moghetti, G. Verlato, Fasting plasma glucose variability predicts 10-year survival of type 2 diabetic patients: the Verona Diabetes Study, Diabetes Care 23(1), 45–50 (2000).

    Article  Google Scholar 

  15. A. Ceriello, Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54(1), 1–7 (2005).

    Article  Google Scholar 

  16. B.H. Ginsberg, An overview of minimally invasive technologies, Clin. Chem. 38(9), 1596–1600 (1992). Review. Erratum in: Clin. Chem. 38(11), 2360 (1992).

    Google Scholar 

  17. E. Boland, T. Monsod, M. Delucia, C.A. Brandt, S. Fernando, W.V. Tamborlane, Limitations of conventional methods of self-monitoring of blood glucose: lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes, Diabetes Care 24(11), 1858–62 (2001).

    Article  Google Scholar 

  18. L. Heinemann, H. Overmann, I. Muhlhauser, How well do patients with type 1 diabetes measure their blood glucose in daily life, Diabetes Care 21(3), 461–2 (1998).

    Article  Google Scholar 

  19. L. Heinemann, G. Schmelzeisen-Redeker, Non-invasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors. Non-Invasive Task Force (NITF), Diabetologia 41(7), 848–854 (1998).

    Article  Google Scholar 

  20. W. Yang, H. He, and D.G. Drueckhammer, Computer-guided design in molecular recognition: Design and synthesis of a glucopyranose receptor, Angew. Chem. Int. Ed. 40(9), 1714–1718 (2001).

    Article  Google Scholar 

  21. T.D. James, P. Limaane, and S. Shinkai, Fluorescent saccharidereceptors: A sweet solution to the design, assembly, and evaluation of boronic acid derived PET sensors, Chem. Commun. 281–288 (1996).

    Google Scholar 

  22. C. R. Cooper, and T. D. James, Synthesis and evaluation of D-glucosamine-selective fluorescent sensors, J. Chem. Soc., Perkin Trans. 1, 963–969 (2000).

    Article  Google Scholar 

  23. A.J. Tong, A. Yamauchi, T. Hayashita, Z.-Y. Zhang, B. D. Smith, and N. Teramae, Boronic acid fluorophore/β-cyclodextrin complex sensors for selective sugar recognition in water, Anal. Chem. 73, 1530–1536 (2001).

    Article  Google Scholar 

  24. N. Di Cesare, and J.R. Lakowicz, Wavelength-ratiometric probes for saccharides based on donor-acceptor diphenylpolyenes, J. Photochem. Photobiol. A: Chem. 143(1), 39–47 (2001).

    Article  Google Scholar 

  25. N. Di Cesare, and J.R. Lakowicz, Spectral properties of fluorophores combining the boronic acid group with electron donor or withdrawing groups. Implication in the development of fluorescence probes for saccharides, J. Phys. Chem. 105, 6834–6840 (2001).

    Google Scholar 

  26. J.S. Schultz, and G. Sims, Affinity sensors for individual metabolites, Biotech. Bioeng. Symp. 9, 65–71 (1979).

    Google Scholar 

  27. J. Schultz, S. Mansouri, and I.J. Goldstein, Affinity sensor: A new technique for developing implantable sensors for glucose and other metabolites, Diabetes Care 5(3), 245–253 (1982).

    Article  Google Scholar 

  28. D. Meadows, and J.S. Schultz, Fiber-optic biosensors based on fluorescence energy transfer, Talanta 35(2), 145–150 (1988).

    Article  Google Scholar 

  29. Ballerstadt, R., and Schultz, J. S. (2000). A galactose-specific affinity hollow fiber sensor based on fluorescence resonance energy transfer, Methods Biotechnol. 7:89–98.

    Google Scholar 

  30. R.J. Russell, and M.V. Pishko, A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel, Anal. Chem. 71, 3126–3132 (1999).

    Article  Google Scholar 

  31. R. Ballerstadt, and J.S. Schultz, A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring, Anal. Chem. 72, 4185–4192 (2000).

    Article  Google Scholar 

  32. O.J. Rolinski, D.J.S. Birch, L.J. McCartney, and J.C. Pickup, Sensing metabolites using donor-acceptor nanodistributions in fluorescence resonance energy transfer, App. Phys. Letts. 78(18), 2796–2798 (2001).

    Article  ADS  Google Scholar 

  33. J.R. Lakowicz, and B.P. Maliwal, Optical sensing of glucose using phase-modulation fluorometry, Anal. Chim. Acta 271, 155–164 (1993).

    Article  Google Scholar 

  34. L. Tolosa, H. Malak, G. Rao, and J.R. Lakowicz, Optical assay for glucose based on the luminescence decay time of the long wavelength dye Cy5™, Sensors and Actuators, 45, 93–99 (1997).

    Article  Google Scholar 

  35. L. Tolosa, H. Szmacinski, H. Rao, and J.R. Lakowicz, Lifetime-based sensing of glucose using energy transfer with a long lifetime donor, Anal. Biochem. 250, 102–108 (1997).

    Article  Google Scholar 

  36. L. Tolosa, I. Gryczynski, L.R., Eichhorn, J.D. Dattelbaum, F.N. Castellano, G. Rao, and J.R. Lakowicz, Glucose sensor for low-cost lifetime-based sensing using a genetically engineered protein, Anal. Biochem. 267, 114–120 (1999).

    Article  Google Scholar 

  37. S. D’Auria, P. Herman, M. Rossi, and J.R. Lakowicz, The fluorescence emission of the apoglucose oxidase from Aspergillus niger as probe to estimate glucose concentrations, Biochem. Biophys. Res. Commun. 263, 550–553 (1999).

    Article  Google Scholar 

  38. S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, I. Gryczynski, M. Rossi, and J.R. Lakowicz, A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor, Biochem. Biophys. Res. Commun. 274, 727–731 (2000).

    Article  Google Scholar 

  39. J.S. Marvin, and H.W. Hellinga, Engineering biosensors by introducing fluorescent allosteric signal transducers: Construction of a novel glucose sensor, J. Am. Chem. Soc. 120, 7–10 (1998).

    Article  Google Scholar 

  40. J.S. Marvin, E.E. Corcoran, N.A. Hattangadi, J.V. Zhang, S.A. Gere, and H.W. Hellinga, The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors, Proc. Natl. Acad. Sci. USA 94, 4366–4371 (1997).

    Article  ADS  Google Scholar 

  41. K.A. Giuliano, and D.L. Taylor, Fluorescent-protein biosensors: New tools for drug discovery, TIB Tech. 16, 135–140 (1998).

    Google Scholar 

  42. K.A. Giuliano, and P.L. Post, Fluorescent protein biosensors: Measurement of molecular dynamics in living cells, Annu. Rev. Biophys. Biomed. Struct. 24, 405–434 (1995).

    Article  Google Scholar 

  43. G.S. Wilson, and Y. Hu, Enzyme-based biosensors for in vivo measurements, Chem. Rev. 100, 2693–2704 (2000).

    Article  Google Scholar 

  44. H.W. Hellinga, and J.S. Marvin, Protein engineering and the development of generic biosensors, TIB Tech. 16, 183–189 (1998).

    Google Scholar 

  45. T. Schalkhammer, C. Lobmaier, B. Ecker, W. Wakolbinger, E. Kynclova, G. Hawa, and F. Pittner, Microfabricated glucose, lactate, glutamate and glutamine thin-film biosensors, Sensors and Actuators B 18–19, 587–591 (1994).

    Article  Google Scholar 

  46. H. Szmacinski, and J.R. Lakowicz, “Lifetime-based sensing,” in Topics in Fluorescence Spectroscopy, (J. R. Lakowicz, ed.), Plenum Press, New York, Vol. 4, pp. 295–334 (1994).

    Google Scholar 

  47. H. Szmacinski, and J.R. Lakowicz, Fluorescence lifetime-based sensing and imaging, Sensors and Actuators B 29, 15–24 (1995).

    Article  Google Scholar 

  48. M.E. Lippitsch, S. Draxler, and D. Kieslinger, Luminescence lifetime-based sensing: new materials, new devices, Sensors and Actuators B 38–39, 96–102 (1997).

    Article  Google Scholar 

  49. S.B. Bambot, G. Rao, M. Romauld, G.M. Carter, and J.R. Lakowicz, Sensing oxygen through skin using a red diode laser and fluorescence lifetimes, Biosensors and Bioelectronics, 10(6–7), 643–652 (1995).

    Article  Google Scholar 

  50. K. Rebrin, T.V. Fishcher, P. Woedtke, and E. Brunstein, Automated feedback control of subcutaneous glucose concentration in diabetic dogs, Diabetologia 32, 573–576 (1989).

    Article  Google Scholar 

  51. G. Velho, P. Froguel, D.R. Thevenot, and G. Reach, In vivo calibration of a subcutaneous glucose kinetics, Diab. Nutr. Metab. 3, 227–233 (1988).

    Google Scholar 

  52. Smith, A., Yang, D., Delcher, H., Eppstein, J., Williams, D., and Wilkes, S. (1999). Fluorescein kinetics in interstitial fluid harvested from diabetic skin during fluorescein angiography: Implications for glucose monitoring, Diabetes Tech. & Therap. 1(1):21–27.

    Article  Google Scholar 

  53. D.J. Menstein, E.F. Pai, L.M. Schopfer, and V. Massey, Absolute stereochemistry of flavins in enzyme catalyzed reactions, Biochemistry 25(22), 6807–6816 (1986).

    Article  Google Scholar 

  54. S. D’Auria, P. Herman, M. Rossi, J.R. Lakowicz, The fluorescence emission of the apo-glucose oxidase from Aspergillus niger as probe to estimate glucose concentrations, Bioch. Biophys. Res. Comm. 263, 550–553 (1999).

    Article  Google Scholar 

  55. V.V. Mozhaev, I.V. Berezim, and K. Martinek, Structure-stability relationship in proteins: fundamental tasks and strategy for the development of stabilized enzyme catalysts for biotechnology, CRC Crit. Rev. Biochem. 25, 235–281 (1998).

    Google Scholar 

  56. S. D’Auria, R. Barone, M. Rossi, R. Nucci, G. Barone, G. Fessas, E. Bertoli, and F. Tanfani, Effects of temperature and SDS on the structure of b-glycosidase from the thermophilic archaeon Sulfolobus solfataricus, Biochem. J. 323, 833–840 (1997).

    Google Scholar 

  57. S. D’Auria, R. Nucci, M. Rossi, I. Gryczynski, Z. Gryczynski, and J.R. Lakowicz, The β-Glycosidase from the Hyperthermophilic Archaeon Sulfolobus Solfataricus: Enzyme Activity and Conformational Dynamics at Temperatures Above 100 °C, Biophys. Chem. 81, 23–31 (1999).

    Article  Google Scholar 

  58. J.R. Lakowicz, and H. Szmacinski, Fluorescence lifetime-based sensing of pH, Ca2+, K+ and glucose, Sensors Actuators B 11, 133–143 (1993).

    Article  Google Scholar 

  59. S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, M. Rossi, and J.R. Lakowicz, A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor, Biochem. Biophys. Res. Comm. 274, 727–731 (2000).

    Article  Google Scholar 

  60. T. Ureta, C. Medina, and A. Preller, The evolution of hexokinases, Arch. Biol. Med. Exp. 20(3–4), 343–357 (1987).

    Google Scholar 

  61. W.S. J. Bennet, and T.A. Steitz, Structure of a complex between yeast hexokinase A and glucose: structure determination and refinement at 3.5 Å resolution, J. Mol. Biol. 140(2), 183–209 (1980).

    Article  Google Scholar 

  62. A.R. Woolfitt, G.L. Kellet, and J.G. Hogget, The binding of glucose and nucleotides to hexokinase from Saccharomyces cerevisiae, Biochim. Biophys. Acta 952(2), 238–243 (1998).

    Google Scholar 

  63. I. Feldman, Ionic strength dependence of glucose binding by yeast hexokinase isoenzyme, Biochem. J. 217(1), 335–337 (1984).

    Google Scholar 

  64. R.C. McDonald, T.A. Steitz, and D.M. Engelman, Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate, Biochemistry 18(2), 338–342 (1979).

    Article  Google Scholar 

  65. C.R. Goward, M.D. Scawen, and T. Atkinson, The inhibition of glucokinase and glycerokinase from Bacillus stearothermophilus by the triazine dye procion blue MX-3G, Biochem. J. 246, 83–88 (1987).

    Google Scholar 

  66. H. Ishikawa, T. Maeda, and H. Hikita, Initial-rate studies of a thermophilic glucokinase from Bacillus stearothermophilus, Biochem. J. 248, 13–20 (1987).

    Google Scholar 

  67. S. D’Auria, N. Di Cesare, M. Staiano, Z. Gryczynski, M. Rossi, and J.R. Lakowicz, A novel fluorescence competitive assay for glucose determinations by using a thermostable glucokinase from the thermophilic microorganism Bacillus stearothermophilus, Analitycal Biochem. 303, 138–144 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

D’Auria, S. et al. (2006). Fluorescence Biosensors for Continuously Monitoring the Blood Glucose Level of Diabetic Patients. In: Geddes, C.D., Lakowicz, J.R. (eds) Glucose Sensing. Topics in Fluorescence Spectroscopy, vol 11. Springer, Boston, MA. https://doi.org/10.1007/0-387-33015-1_5

Download citation

Publish with us

Policies and ethics