Skip to main content

The Genus Sporomusa

  • Reference work entry
The Prokaryotes

Introduction

The genus Sporomusa was created in 1984 (Möller et al., 1984) to accommodate a number of strains of anaerobic, homoacetogenic bacteria distinguished by having a Gram-negative cell wall and an ability to form endospores-two properties whose coincidence is uncommon in the microbial world. The genus name means “spore-bearing banana,” and reflects the slightly curved, rod shape of the cells. Two species, S. sphaeroides and S. ovata, were distinguished from each other on the bases of endospore shape, substrate utilization pattern, and G+C content of their genomic DNA. Subsequently, five additional species were revealed, and the phylogenetic position of Sporomusa was clarified. This chapter will update our understanding of Sporomusa, including several of their more notable properties: their common occurrence in anoxic (and even seemingly well-aerated) environments, their ability to grow by decarboxylation of organic acids, and their possession of unusual corrinoids.

Phylogeny

The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Baena, S., M. L. Fardeau, T. H. S. Woo, B. Ollivier, M. Labat, and B. K. C. Patel. 1999 Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, “Selenomonas acidaminophila” and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov and Anaeromusa acidaminophila gen. nov., comb. nov Int. J. Syst. Bacteriol. 49 969–974

    Article  PubMed  CAS  Google Scholar 

  • Balch, W. E., and R. S. Wolfe. 1976 New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere Appl. Environ. Microbiol. 32 781–791

    PubMed  CAS  Google Scholar 

  • Biebl, H., H. Schwab-Hanisch, C. Sproer, and H. Lunsdorf. 2000 Propionispora vibrioides, nov gen., nov sp., a new Gram-negative, spore-forming anaerobe that ferments sugar alcohols Arch. Microbiol. 174 239–247

    Article  PubMed  CAS  Google Scholar 

  • Braun, M., S. Schoberth, and G. Gottschalk. 1979 Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats Arch. Microbiol. 120 201–204

    Article  PubMed  CAS  Google Scholar 

  • Braus-Stromeyer, S. A., G. Schnappauf, G. H. Braus, A. S. Gossner, and H. L. Drake. 1997 Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria J. Bacteriol. 179 7197–7200

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., and J. M. Switzer. 1986 Acetate synthesis from H2 plus CO2 by termite gut microbes Appl. Environ. Microbiol. 52 623–630

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988 Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites Arch. Microbiol. 150 282–288

    Article  CAS  Google Scholar 

  • Breznak, J. A., and J. S. Blum. 1991 Mixotrophy in the termite gut acetogen, Sporomusa termitida Arch. Microbiol. 156 105–110

    Article  CAS  Google Scholar 

  • Breznak, J. A. 1994a Acetogenesis from carbon dioxide in termite guts In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York NY 303–330

    Google Scholar 

  • Breznak, J. A., and R. N. Costilow. 1994b Physicochemical factors in growth In: P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (Eds.) Methods for General and Molecular Bacteriology American Society for Microbiology Washington DC 137–154

    Google Scholar 

  • Brune, A., D. Emerson, and J. A. Breznak. 1995 The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites Appl. Environ. Microbiol. 61 2681–2687

    PubMed  CAS  Google Scholar 

  • Collins M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, J. A. E. Farrow. 1994 The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations Int. J. Syst. Bacteriol. 44 812–826

    Article  PubMed  CAS  Google Scholar 

  • Cord-Ruwisch, R., and B. Ollivier. 1986 Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes Arch. Microbiol. 144 163–165

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R., H.-J. Seitz, and R. Conrad. 1988 The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor Arch. Microbiol. 149 350–357

    Article  CAS  Google Scholar 

  • Dehning, I., M. Stieb, and B. Schink. 1989 Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate Arch. Microbiol. 151 421–426

    Article  CAS  Google Scholar 

  • Dehning, I., and B. Schink. 1994 Anaerobic degradation of malonate via malonyl-CoA by Sporomusa malonica, Klebsiella oxytoca, and Rhodobacter capsulatus Ant. v. Leeuwenhoek 66 343–350

    Article  CAS  Google Scholar 

  • Dimroth, P., and B. Schink. 1998 Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria Arch. Microbiol. 170 69–77

    Article  PubMed  CAS  Google Scholar 

  • Dobrindt, U., and M. Blaut. 1996 Purification and characterization of a membrane-bound hydrogenase from Sporomusa sphaeroides involved in energy-transducing electron transport Arch. Microbiol. 165 141–147

    Article  PubMed  CAS  Google Scholar 

  • Drake, H. L. 1994 Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: Past and current perspectives In: H. L. Drake(Ed.) Acetogenesis Chapman and Hall New York NY 3–60

    Google Scholar 

  • Ebert, A., and A. Brune. 1997 Hydrogen concentration profiles at the oxic-anoxic interface: A microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar) Appl. Environ. Microbiol. 63 4039–4046

    PubMed  CAS  Google Scholar 

  • Eichler, B., and B. Schink. 1984 Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe Arch. Microbiol. 140 147–152

    Article  CAS  Google Scholar 

  • Garrity, G. M., and J. G. Holt. 2000 An overview of the road map to the manual In: G. M. Garrity and J. G. Holt (Eds.) [{http://www.cme.msu.edu/bergeys/}Bergey’s Manual of Systematic Bacteriology, 2nd ed.]Springer-Verlag New York NY 2 1–19

    Google Scholar 

  • Hamana, K. 1999 Distribution of cell wall-linked polyamines within the Gram-negative anaerobes of the subbranch Sporomusa belonging phylogenetically to Gram-positive taxa Microbios. 100 145–157

    CAS  Google Scholar 

  • Heijthuijsen, J. H. F. G., and T. A. Hansen. 1986 Interspecies hydrogen transfer in co-cultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria FEMS Microbiol. Ecol. 38 57–64

    Article  CAS  Google Scholar 

  • Hermann, M., K. M. Noll, and R. S. Wolfe. 1986 Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere Appl. Environ. Microbiol. 51 1124–1126

    PubMed  CAS  Google Scholar 

  • Hermann, M., M. R. Popoff, and M. Sebald. 1987 Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide Int. J. Syst. Bacteriol. 37 93–101

    Article  CAS  Google Scholar 

  • Hungate, R. E. 1969 A roll tube method for the cultivation of strict anaerobes In: D. W. Ribbons (Eds.) Methods in Microbiology Academic Press New York NY 117–132

    Google Scholar 

  • Janssen, P. H., and K. A. O’Farrell. 1999 Succinispira mobilis gen. nov., sp nov., a succinate-decarboxylating anaerobic bacterium Int. J. Syst. Bacteriol. 49 1009–1013

    Article  PubMed  CAS  Google Scholar 

  • Kamlage, B., and M. Blaut. 1993a Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups J. Bacteriol. 175 3043–3050

    PubMed  CAS  Google Scholar 

  • Kamlage, B., A. Boelter, and M. Blaut. 1993b Spectroscopic and potentiometric characterization of cytochromes in two Sporomusa species and their expression during growth on selected substrates Arch. Microbiol. 159 189–196

    Article  CAS  Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991 Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis Arch. Microbiol. 156 91–98

    Article  PubMed  CAS  Google Scholar 

  • Karnholz, A., K. Kusel, and H. Drake. 2000 Growth and metabolism of acetogenic bacteria in the presence of oxygen Abstr. Am. Soc. Microbiol. I-91 401

    Google Scholar 

  • Kuhner, C. H., C. Frank, A. Griesshammer, M. Schmittroth, G. Acker, A. Gossner, H. L. Drake. 1997 Sporomusa silvacetica sp. nov., an acetogenic bacterium isolated from aggregated forest soil Int. J. Syst. Bacteriol. 47 352–358

    Article  PubMed  CAS  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1974 A serum bottle modification of the Hungate technique forcultivating obligate anaerobes Appl. Microbiol. 27 985–987

    PubMed  CAS  Google Scholar 

  • Möller, B., R. Ossmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984 Sporomusa, a new genus of Gram-negative anaerobic-bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov Arch. Microbiol. 139 388–396

    Article  Google Scholar 

  • Müller, V., and S. Bowien. 1995 Differential effects of sodium ions on motility in the homoacetogenic bacteria Acetobacterium woodii and Sporomusa sphaeroides Arch. Microbiol. 164 363–369

    Article  Google Scholar 

  • Ollivier, B., R. Cordruwisch, A. Lombardo, and J. L. Garcia. 1985 Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium Arch. Microbiol. 142 307–310

    Article  CAS  Google Scholar 

  • Oremland, R. S. 1988 Biogeochemistry of methanogenic bacteria In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley and Sons New York NY 641–705

    Google Scholar 

  • Oren, A., H. Pohla, and E. Stackebrandt. 1987 Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb. nov., and description of Sporohalobacter marismortui sp. nov Syst. Appl. Microbiol. 9 239–246

    Article  CAS  Google Scholar 

  • Peters, V., P. H. Janssen, and R. Conrad. 1999 Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen Curr. Microbiol. 38 285–289

    Article  CAS  Google Scholar 

  • Rosencrantz, D., F. A. Rainey, and P. H. Janssen. 1999 Culturable populations of Sporomusa spp. and Desulfovibrio spp. in the anoxic bulk soil of flooded rice microcosms Appl. Environ. Microbiol. 65 3526–3533

    PubMed  CAS  Google Scholar 

  • Sass, H., H. Cypionka, and H. D. Babenzien. 1997 Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin FEMS Microbiol. Ecol. 22 245–255

    Article  CAS  Google Scholar 

  • Sass, H., E. Wieringa, H. Cypionka, H. D. Babenzien, and J. Overmann. 1998 High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment Arch. Microbiol. 170 243–251

    Article  PubMed  CAS  Google Scholar 

  • Sawada, S., S. Kokeguchi, F. Nishimura, S. Takashiba, and Y. Murayama. 1999 Phylogenetic characterization of Centipeda periodontii, Selenomonas sputigena and Selenomonas species by 16S rRNA gene sequence analysis Microbios. 98 133–140

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., H. Pohla, R. Kroppenstedt, H. Hippe, and C. R. Woese. 1985 16S ribosomal-RNA analysis of Sporomusa, Selenomonas, and Megasphaera: On the phylogenetic origin of Gram-positive Eubacteria Arch. Microbiol. 143 270–276

    Article  CAS  Google Scholar 

  • Stankewich, J. P., B. J. Cosenza, and A. L. Shigo. 1971 Clostridium quercicolum sp. n., isolated from discolored tissues in living oak trees Ant. v. Leeuwenhoek 37 299–302

    Article  CAS  Google Scholar 

  • Strömpl, C., B. J. Tindall, G. N. Jarvis, H. Lunsdorf, E. R. B. Moore, and H. Hippe. 1999 A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen, nov., comb, nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov Int. J. Syst. Bacteriol. 49 1861–1872

    Article  PubMed  Google Scholar 

  • Strömpl, C., B. J. Tindall, H. Lunsdorf, T. Y. Wong, E. R. B. Moore, and H. Hippe. 2000 Reclassification of Clostridium quercicolum as Dendrosporobacter quercicolus gen. nov., comb. nov Int. J. Syst. Evol. Microbiol. 50 101–106

    Article  PubMed  Google Scholar 

  • Stupperich, E., H. J. Eisinger, and B. Krautler. 1988 Diversity of corrinoids in acetogenic bacteria: P-cresolylcobamide from Sporomusa ovata, 5-methoxy-6-methylbenzimidazolylcobamide from Clostridium formicoaceticum and vitamin B12 from Acetobacterium woodii Eur. J. Biochem. 172 459–464

    Article  PubMed  CAS  Google Scholar 

  • Stupperich, E., H. J. Eisinger, and B. Krautler. 1989 Identification of phenolyl cobamide from the homoacetogenic bacterium Sporomusa ovata Eur. J. Biochem. 186 657–661

    Article  PubMed  CAS  Google Scholar 

  • Stupperich, E., P. Aulkemeyer, and C. Eckerskorn. 1992 Purification and characterization of a methanol-induced cobamide-containing protein from Sporomusa ovata Arch. Microbiol. 158 370–373

    Article  PubMed  CAS  Google Scholar 

  • Stupperich, E., and R. Konle. 1993 Corrinoid-dependent methyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism by Sporomusa ovata Appl. Environ. Microbiol. 59 3110–3116

    PubMed  CAS  Google Scholar 

  • Stupperich, E., R. Konle, and C. Eckerskorn. 1996 Anaerobic O-demethylations of methoxynaphthols, methoxyfuran, and fluoroanisols by Sporomusa ovata Biochem. Biophys. Res. Commun. 223 770–777

    Article  PubMed  CAS  Google Scholar 

  • Terzenbach, D. P., and M. Blaut. 1994 Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria FEMS Microbiol. Lett. 123 213–218

    Article  PubMed  CAS  Google Scholar 

  • Van Gylswyk, N. O. 1995 Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism Int. J. Syst. Bacteriol. 45 297–300

    Article  PubMed  Google Scholar 

  • Van Gylswyk, N. O., H. Hippe, and F. A. Rainey. 1997 Schwartzia succinivorans gen. nov., sp. nov., another ruminal bacterium utilizing succinate as the sole energy source Int. J. Syst. Bacteriol. 47 155–159

    Article  PubMed  Google Scholar 

  • Widdel, F., G.-W. Kohring, and F. Mayer. 1983 Studies on dissimilatory silfate-reducing bacteria that decompose fatty acids. III: Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov Arch. Microbiol. 134 286–294

    Article  CAS  Google Scholar 

  • Willems, A., and M. D. Collins. 1995a 16S rRNA gene similarities indicate that Hallella seregens (Moore and Moore) and Mitsuokella dentalis (Haapsalo et al.) are genealogically highly related and are members of the genus Prevotella: Emended description of the genus Prevotella (Shah and Collins) and description of Prevotella dentalis comb. nov Int. J. Syst. Bacteriol. 45 832–836

    Article  PubMed  CAS  Google Scholar 

  • Willems, A., and M. D. Collins. 1995b Phylogenetic placement of Dialister pneumosintes (formerly Bacteroides pneumosintes) within the Sporomusa subbranch of the Clostridium subphylum of the Gram-positive bacteria Int. J. Syst. Bacteriol. 45 403–405

    Article  PubMed  CAS  Google Scholar 

  • Wohlfarth, G., and G. Diekert. 1991 Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria Arch. Microbiol. 155 378–381

    Article  CAS  Google Scholar 

  • Wolin, E. A., R. S. Wolfe, and M. J. Wolin. 1964 Viologen dye inhibition of methane formation by Methanobacillus omelianskii J. Bacteriol. 87 993–998

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Breznak, J.A. (2006). The Genus Sporomusa . In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30744-3_34

Download citation

Publish with us

Policies and ethics