Skip to main content

Flexible Octahedra in the Hyperbolic Space

  • Chapter
Non-Euclidean Geometries

Part of the book series: Mathematics and Its Applications ((MAIA,volume 581))

Abstract

This paper treats flexible polyhedra in the hyperbolic 3-space ℍ3. It is proved that the geometric characterization of octahedra being infinitesimally flexible of orders 1 or 2 is quite the same as in the Euclidean case. Also Euclidean results concerning continuously flexible octahedra remain valid in hyperbolic geometry: There are at least three types of continuously flexible octahedra in #x210D;3; the line-symmetric Type 1, Type 2 with planar symmetry, and the non-symmetric Type 3 with two flat positions. However, Type 3 can be subdivided into three subclasses according to the type of circles in hyperbolic geometry. The flexibility of Type 3 octahedra can again be argued with the aid of Ivory’s Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bricard, Raoul. (1897). Mémoire sur la théorie de l’octaèdre articulé. J. math. pur. appl., Liouville 3, 113–148.

    MATH  Google Scholar 

  2. Blaschke, Wilhelm. (1920). Über affine Geometrie XXVI: Wackelige Achtflache. Math. Z. 6, 85–93.

    Article  MATH  MathSciNet  Google Scholar 

  3. Connelly, Robert, and Hermann Servatius. (1994). Higher-order rigidity — What is the proper definition? Discrete Comput. Geom. 11, no. 2, 193–200.

    MathSciNet  Google Scholar 

  4. Sabitov, Idzhad Kh. (1992). Local Theory of Bendings of Surfaces. In Yu.D. Burago, V.A. Zalgaller (eds.): Geometry III, Theory of Surfaces. Encycl. of Math. Sciences, vol. 48, Springer-Verlag, pp. 179–250.

    Google Scholar 

  5. Stachel, Hellmuth. (1987). Zur Einzigkeit der Bricardschen Oktaeder. J. Geom. 28, 41–56.

    Article  MATH  MathSciNet  Google Scholar 

  6. Stachel, Hellmuth. (1999). Higher Order Flexibility of Octahedra. Period. Math. Hung. 39(1–3), 225–240.

    MATH  MathSciNet  Google Scholar 

  7. Stachel, Hellmuth. (2002). Remarks on Bricard’s Flexible Octahedra of Type 3. Proc. 10th Internat. Conference on Geomety and Graphic, Kiev (Ukraine), Vol. 1, 8–12.

    Google Scholar 

  8. Stachel, Hellmuth. (2002). Configuration Theorems on Bipartite Frameworks. Rend. Circ. Mat. Palermo, II. Ser., 70, 335–351 (2002).

    MathSciNet  Google Scholar 

  9. Wunderlich, Walter. (1965). Starre, kippende, wackelige und bewegliche Achtflache. Elem. Math. 20, 25–32.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Stachel, H. (2006). Flexible Octahedra in the Hyperbolic Space. In: Prékopa, A., Molnár, E. (eds) Non-Euclidean Geometries. Mathematics and Its Applications, vol 581. Springer, Boston, MA. https://doi.org/10.1007/0-387-29555-0_11

Download citation

Publish with us

Policies and ethics