Skip to main content

Flow in porous media: An attempt to outline Georges Matheron’s contributions

  • Chapter
Space, Structure and Randomness

Part of the book series: Lecture Notes in Statistics ((LNS,volume 183))

  • 1557 Accesses

Abstract

During the last three decades of the 20th century, the application of a stochastic approach to flow in porous media has certainly been a very active research area, all over the world. Most of the eminent scientists working abroad in the domain (e.g., Dagan, Neuman, Gelhar, Gutjahr...) happened to visit the Ecole des Mines de Paris before 1980 and, more precisely, they spent some time in two small research labs that were located close to each other in Fontainebleau: the Laboratory for Mathematical Hydrogeology, and the Center for Geostatistics. All of them therefore had the opportunity to meet Georges Matheron who was, at that time, heading the Center for Geostatistics. Strangely enough, these visitors then perceived Matheron more as the inventor of kriging than as the author of “Elements pour une Théorie des Milieux Poreux”, a book he had written as early as 1967[41], i.e. only two years after his first book on random functions (RF) and on the estimation of regionalized variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bear, J. (1972) Dynamics of fluids in porous media, American Elsevier, New-York.

    Google Scholar 

  2. Besbes, M., Delhomme, J.P., Hubert, P., Ledoux, E., Marsily, G. de (1978) Etude sur modèle mathématique des débits de fuite du réservoir d’Origny Sainte-Benoite., Internal Report, Paris School of Mines, CIG, 78/52, 50 p. plus figures.

    Google Scholar 

  3. Bouchaud, J.P. (1990a) Anomalous diffusion in random media: statistical mechanisms, models and physical applications. Physical Report, 195, 127

    Article  MathSciNet  Google Scholar 

  4. Bouchaud, J.P., J Koplik, A Provata, S Redner (1990b) Superdiffusive Transport due to Random Velocities, Physical Review Letters, 64, 2503

    Article  Google Scholar 

  5. Certes, C., Marsily, G. de (1991) Application of the pilot point method to the identification of aquifer transmissivity, Advances in Water Resources, vol.14, no 5, p.284–300.

    Article  Google Scholar 

  6. Chiles J.P. and Delfiner P. (1999) Geostatistics: Modeling spatial uncertainty” (Chapter 8: Scale effects and Inverse problems p.593–635), John Wiley and Sons, New York.

    MATH  Google Scholar 

  7. Dagan G. (1989) Flow and Transport in Porous Formations, Springer-Verlag, Berlin.

    Google Scholar 

  8. Dagan, G. (1993) High-order correction of effective permeability of heterogeneous isotropic formations of lognormal conductivity distribution. Transp. Porous Media, 12, 279–290.

    Article  Google Scholar 

  9. Dagan, G. (2001) Effective, equivalent and apparent properties of heterogeneous media, Proceed. 20th Intern. Congress of Theoretical and Applied Mechanics (H. Aref and J.W. Phillips, eds). Kluwer Academic Press, Dordrecht, The Netherlands.

    Google Scholar 

  10. Delhomme, J.P. (1976) Applications de la théorie des variables régionalisées dans les sciences de l’eau, Doctoral thesis, Université de Paris VI.

    Google Scholar 

  11. Delhomme, J.P. (1978) Kriging in the hydrosciences, Advances in Water Resources, vol.1, no 5, p.251–266.

    Article  Google Scholar 

  12. Delhomme, J.P. (1979a) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach, Water Resources Research, vol.15, no 2, p.269–280.

    Google Scholar 

  13. Delhomme, J.P. (1979b) Kriging under boundary conditions, Oral communication, American Geophysical Union Fall Meeting, San Francisco (figures later reprinted in: Chiles J.P. and Delfiner P. (1999) p.322–323).

    Google Scholar 

  14. Deutsch, C.V., Journel, A.G. (1992) GSLIB, Geostatistical Software Library and User’s Guide. Oxford University Press, New York.

    Google Scholar 

  15. de Wit, A. (1995) Correlation structure dependence of the effective permeability of heterogeneous porous media. Phys. Fluids, 7(11), 2553–2562.

    Article  MATH  Google Scholar 

  16. Dieulin, A., Marsily, G. de, Matheron, G. (1981) Growth of the dispersion coefficient with the mean traveled distance in porous media. Int. Symp. on the Quality of Groundwater, Amsterdam, March 1981. In: Quality of Groundwater, Elsevier, 1981.

    Google Scholar 

  17. Dong A. (1990) Estimation géostatistique des phénomènes régis par des équations aux dérivées partielles, Doctoral thesis, Ecole des Mines, Paris.

    Google Scholar 

  18. Eisntein, A. (1905) Über die von den Molekularkinetischen Theorie der Wärme gefordete Bewegung von in ruhenenden Flüssigkeiten suspendierten Teinchen. Ann. Phys. 17, 539–560.

    Google Scholar 

  19. Emsellem, Y., Marsily, G. de (1971) An automatic solution for the inverse problem. Water Resources Research vol.7, no 5, p.1264–1283.

    Google Scholar 

  20. Fasanino, G., J.E. Molinard, G. de Marsily, V. Pelce (1986) Inverse modeling in gas reservoirs. Soc. of Petr.Eng. J, SPE 15592, 15 p.

    Google Scholar 

  21. Freeze, R.A. (1975) A stochastic-conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media, Water Resources Research, vol.11, no 5, p.725–741.

    Google Scholar 

  22. Fried, J.J., Combarnous, M.A. (1971) Dispersion in porous media. Adv Hydrosc. 7, 169–282.

    Google Scholar 

  23. Gelhar L.W. (1993) Stochastic Subsurface Hydrology, Prentice-Hall, Englewood Cliffs NJ.

    Google Scholar 

  24. Gelhar, L.W., Gutjahr A.L., Naff, R.L. (1979) Stochastic analysis of macrodispersion in a stratified aquifer. Water Resources Research Vol.15, no 6, p.1387–1397.

    Google Scholar 

  25. Gutjahr A.L. and Gelhar L.W. (1981) Stochastic models for subsurface flow: Infinite versus finite domains and stationarity, Water Resources Research, vol.17, no 2, p.337–350.

    Google Scholar 

  26. Hoeksema R.J. and Kitanidis P.K. (1984) An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling, Water Resources Research, vol.20, no 7, p.1003–1020.

    Google Scholar 

  27. Indelman, P., Abramovich, B. (1994) A higher order approximation to effective conductivity in media of anisotropic random structure. Water Resources Research, vol.30, no 6, p.1857–1864.

    Article  Google Scholar 

  28. Journel, A.G., (1989). Fundamentals of Geostatistics in Five Lessons, Short Courses of Geology, 8, AGU, Washington D.C., 1989.

    Google Scholar 

  29. King, P. (1987) The use of field theoretic methods for the study of flow in heterogeneous porous media. J. Phys. A. Math. Gen., 20, 3935–3947.

    Article  MATH  Google Scholar 

  30. Kitanidis P.K. and Vomvoris E.G. (1983) A geostatistical approach to the inverse problem in groundwater modeling, steady state, and one-dimensional simulations, Water Resources Research, vol.19, no 3, p.677–690.

    Article  Google Scholar 

  31. Kolmogorov, A.N. (1931) Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104, 415–458.

    Article  MATH  MathSciNet  Google Scholar 

  32. Landau, L.D., Lifschitz, E.M. (1960) “Electrodynamics of continuous media”. Pergamon Press, Oxford, United Kingdom.

    MATH  Google Scholar 

  33. Lavenue, A.M., Ramarao, B.S., Marsily, G. de, Marietta, M.G. (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: Part 2-Application. Water Resources Research, vol.31, no 3, p.495–516.

    Article  Google Scholar 

  34. Mantoglou, A., Wilson, J.L. (1982) The turning bands method for the simulation of random fields using line generation by a spectral method. Water Resources Research, vol.18, no 5, p.645–658.

    Google Scholar 

  35. Marsily, G. de (1978) De l’identification des systèmes hydrologiques. Doctoral Thesis, Université Paris VI.

    Google Scholar 

  36. Marsily, G. de (1986) Quantitative Hydrogeology. Groundwater Hydrology for Engineers. Academic Press, New-York, 440 p.

    Google Scholar 

  37. Marsily G. de, Delhomme J.P., Coudrain-Ribstein A. and Lavenue A.M. (2000) Four decades of inverse problems in hydrogeology, in Zhang D. and Winter C.L. eds, Theory, Modeling, and Field Investigation in Hydrogeology, Geological Society of America Special Paper 348, p.1–17.

    Google Scholar 

  38. Marsily, G. de, Delay, F., Goncalvez, J., Renard, Ph., Teles, V., Violette, S. (2004) Dealing with spatial heterogeneity. Hydrogeology J., to appear.

    Google Scholar 

  39. Matheron, G. (1965) Les variables régionalisées et leur estimation. Masson, Paris.

    Google Scholar 

  40. Matheron, G. (1966, 1967, 1968) Structure et composition des perméabilités. April 1966. Genèse et signification énergétique de la loi de Darcy. November 1966. Méthode de Schwydler et règles de pondération. January 196. Composition des perméabilités en milieu poreux hétérogène: critique de la règle de pondération géométrique. March 1968. Revue de l’Institut Français du Pétrole, Rueil Malmaison.

    Google Scholar 

  41. Matheron G. (1967) Elements pour une théorie des milieux poreux, Masson, Paris.

    Google Scholar 

  42. Matheron G. (1969) Le krigeage universel, Cahiers du Centre de Morphologie Mathématique de Fontainebleau, Fasc.1, Ecole des Mines de Paris.

    Google Scholar 

  43. Matheron, G. (1971) La théorie des fonctions aléatoires intrinsèques généralisées. Note Géostatistique No117, Technical Report N-252, Centre de Géostatistique, Fontainebleau, France.

    Google Scholar 

  44. Matheron G. (1973) The intrinsic random functions and their applications, Advances in Applied Probability, vol. 5, p.439–468.

    Article  MATH  MathSciNet  Google Scholar 

  45. Matheron G. (1974) Effet proportionnel et lognormalité ou: Le retour du serpent de mer, Report N-374, Centre de Géostatistique, Ecole des Mines de Paris.

    Google Scholar 

  46. Matheron G. (1979) L’émergence de la loi de Darcy, Report N-592, Centre de Géostatistique, Ecole des Mines de Paris.

    Google Scholar 

  47. Matheron, G., Marsily, G. de (1980) Is transport in porous media always diffusive? A counter-example. Water Resources Research, vol.16, no 5, p.901–917.

    Google Scholar 

  48. Matheron, G. (1984) L’émergence de la loi de Darcy. In: Marsily, G. de (Ed.) “Ecoulement dans les milieux poreux ou fissurés”, Annales des Mines, 5–6, 1984, p. 11–16.

    Google Scholar 

  49. Matheron, G. (1985) Calcul de la dispersion macroscopique dans le cas à une seule dimension. Intern. Symposium on The Stochastic Approach to Subsurface Flow, Montvillargenne, June 3–6, 1985. Intern. Assoc. for Hydraulic Research, G. de Marsily, Ed., Paris School of Mines, Fontainebleau, France.

    Google Scholar 

  50. Matheron, G. (1993) Quelques inégalités pour la perméabilité effective d’un milieu hétérogène. Cahiers de Géostatistique, Fascicule 3, Compte Rendu des Journées de Géostatistiques, 25–26 mai 1993, p.1–20. Paris School of Mines publication.

    Google Scholar 

  51. Meier, P.M., Carrera, J., Sanchez-Vila, X. (1998) An evaluation of Jacob’s method for the interpretation of pumping tests in heterogeneous formations. Water Resources Research, vol.34, no 5, p.1011–1025.

    Article  Google Scholar 

  52. Mizell S.A., Gutjahr A.L. and Gelhar W. (1982) Stochastic analysis of spatial variability in two-dimensional steady groundwater flow assuming stationary and nonstationary heads, Water Resources Research, vol.18, no 6, p.1053–1067.

    Google Scholar 

  53. Neuman, S.P. (1973) Calibration of distributed parameter groundwater flow models viewed as a multiple objective decision process under uncertainty. Water Resources Research, vol.9, no 4, p. 1006–1021.

    Google Scholar 

  54. Neuman S.P. (1980) A statistical approach to the inverse problem of aquifer hydrology, Part 3: Improved solution method and added perspective, Water Resources Research, vol.16, no 2, p.331–346.

    Google Scholar 

  55. Neuman, S.P. (1984) Role of geostatistics in subsurface hydrology. In Geostatistics for Nature Resources Characterization, NATO-ASI, Verly et al, Eds, Part 1, 787–816, Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  56. Noetinger, B. (2000) Computing the effective permeability of log-normal permeability fields using renormalization methods. C.R. Acad. Sci. Paris / Earth and Planetary Sciences, 331, 353–357.

    Google Scholar 

  57. Ramarao, B.S., Lavenue, A.M., Marsily, G. de, Marietta, M.G. (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: Part 1-Theory and computational experiments. Water Resources Research, Vol.31, no 3, p.475–493.

    Article  Google Scholar 

  58. Renard P. and Marsily G. de (1997) Calculating equivalent permeability: A review, Advances in Water Resources, vol.20, no 5–6, p.253–278.

    Article  Google Scholar 

  59. Roth C., Fouquet C. de, Chiles J.P. and G. Matheron (1997) Geostatistics applied to hydrology’s inverse problem: Taking boundary conditions into account, in: Geostatistics Wollongong’ 96, Baafi E.Y. and Shofield N.A. eds, Kluwer, Dordrecht, vol.2, p.1085–1097.

    Google Scholar 

  60. Rubin, Y., Dagan, G. (1987a) Stochastic identification of transmissivity and effective recharge in steady groundwater flow. 1. Theory. Water Resources Research, vol. 23, no 7, p. 1185–1192.

    Google Scholar 

  61. Rubin, Y., Dagan, G. (1987b) Stochastic identification of transmissivity and effective recharge in steady groundwater flow. 2. Case study. Water Resources Research, vol. 23, no 7, p. 1193–1200.

    Google Scholar 

  62. Rubin, Y., Gomez-Hernandez, J. (1990) A stochastic approach to the problem of upscaling the conductivity in disordered media: Theory and unconditional numerical simulations. Water Resources Research, vol.26, no 3, p.691–701.

    Article  Google Scholar 

  63. Schwydler, M.I. (1962a) Les courants d’écoulement dans les milieux hétérogènes. Izv. Akad. Nauk. SSSR, mekh. I mas, no 3, 185–190.

    Google Scholar 

  64. Schwydler, M.I. (1962b) Courants d’écoulement plans dans les milieux à hétérogénéité aléatoire. Izv. Akad. Nauk. SSSR, mekh. I mas, no 6, 5–71.

    Google Scholar 

  65. Schwydler, M.I. (1963a) Sur les caractéristiques moyennes des courants d’écoulement dans les milieux à hétérogénéité aléatoire. Izv. Akad. Nauk. SSSR, mekh. I mas, no 4, 127–129.

    Google Scholar 

  66. Schwydler, M.I. (1963b) Sur la précision de la prévision du débit des puits. Izv. Akad. Nauk. SSSR, mekh. I mas, no 5, 148–150.

    Google Scholar 

  67. Schwydler, M.I. (1963c) Sur les calculs hydrodynamiques des écoulements de filtration dans les milieux poreux hétérogènes. Dobyca nefti, teorija i praktica, Annuaire 1963, 107–108, VNII.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Delhomme, J.P., de Marsily, G. (2005). Flow in porous media: An attempt to outline Georges Matheron’s contributions. In: Bilodeau, M., Meyer, F., Schmitt, M. (eds) Space, Structure and Randomness. Lecture Notes in Statistics, vol 183. Springer, New York, NY. https://doi.org/10.1007/0-387-29115-6_4

Download citation

Publish with us

Policies and ethics