Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 178))

Abstract

Temporal dynamics and structural complexity of plant canopies strongly affect light harvesting, generating variable spatio-temporal distributions of the irradiance on leaf area (Baldocchi and Collineau 1994). Leaf light interception scales linearly with incident irradiance, but plant photosynthesis and photomorphogenesis typically exhibit a saturating response to light. Because of the inherent nonlinearity in light responses, estimates of the photosynthetic rate at canopy scale cannot be obtained from mean irradiance values, but require a full description of the radiative field. This means that scaling of light harvesting from leaf to landscape is a central issue for the prediction and understanding of plant canopy processes (Asner and Wessman 1997). Because of the strong linkage between photosynthesis and plant water use, canopy radiative field is not only relevant for primary plant productivity, but also for the partitioning of ecosystem energy fluxes between sensible and latent heat. Thus, architecture of plant stands and resulting light environment exert a major control over the meteorology of plant communities (Baldocchi and Harley 1995, Lai et al. 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcocer-Ruthling, M., Robberecht, R., and Thill, D. C. 1989. The response of Bouteloua scorpioides to water stress at two phenological stages. Bot. Gaz. 150:454–461.

    Article  Google Scholar 

  • Anderson, M. C. 1964. Studies of the woodland light climate. I. The photographic computation of light conditions. J. Ecol. 52:27–41.

    Article  Google Scholar 

  • Asner, G. P., and Wessman, C. A. 1997. Scaling PAR absorption from the leaf to landscape level in spatially heterogeneous ecosystems. Ecol. Model. 103:81–97.

    Article  Google Scholar 

  • Aussenac, G., and Ducrey, M. 1977. Etude bioclimatique d’une futaie feuillue (Fagus sylvatica L. et Quercus sessiliflora Salisb.) de l’Est de la France. I. Analyse des profiles microclimatiques et des caractéristiques anatomiques et morphologiques se l’appareil foliaire. Ann. Sci. For. 34:265–284.

    Article  Google Scholar 

  • Baldocchi, D., and Collineau, S. 1994. The physical nature of solar radiation in heterogeneous canopies: Spatial and temporal attributes. In: Exploitation of Environmental Heterogeneity by Plants. Ecophysiological Processes Above-and Belowground. M. M. Caldwell and R. W. Pearcy (eds.), pp. 21–71. San Diego: Academic Press.

    Google Scholar 

  • Baldocchi, D. D., and Harley, P. C. 1995. Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application. Plant Cell Environ. 18:1157–1173.

    Article  Google Scholar 

  • Baldocchi, D. D., and Hutchison, B. A. 1986. On estimating canopy photosynthesis and stomatal conductance in a deciduous forest with clumped foliage. Tree Physiol. 2:155–168.

    PubMed  Google Scholar 

  • Baldocchi, D. D., and Wilson, K. B. 2001. Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecol. Model. 142:155–184.

    Article  CAS  Google Scholar 

  • Campbell, G. S. 1986. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agric. For. Meteorol. 36:317–321.

    Article  Google Scholar 

  • Campbell, G. S., and Norman, J. M. 1989. The description and measurement of plant canopy structure. In: Plant Canopies: Their Growth, Form and Function. G. Russell, B. Marshall, and P. G. Jarvis (eds.), pp. 1–19. Cambridge: Cambridge University Press.

    Google Scholar 

  • Campbell, G. S., and Norman, J. M. 1998. An introduction to environmental biophysics, 2nd ed. New York: Springer-Verlag.

    Google Scholar 

  • Carter, G. A., and Smith, W. K. 1985. Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiol. 79:1038–1043.

    Article  PubMed  CAS  Google Scholar 

  • Casella, E., and Sinoquet, H. 2003. A method for describing the canopy architecture of coppice poplar with allometric relationships. Tree Physiol. 23:1153–1170.

    PubMed  Google Scholar 

  • Cescatti, A. 1997a. Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms. Ecol. Model. 101:263–274.

    Article  Google Scholar 

  • Cescatti, A. 1997b. Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. II. Model testing and application in a Norway spruce stand. Ecol. Model. 101:275–284.

    Article  Google Scholar 

  • Cescatti, A. 1998. Effects of needle clumping in shoots and crowns on the radiative regime of a Norway spruce canopy. Ann. Sci. For. 55:89–102.

    Article  Google Scholar 

  • Cescatti, A., and Zorer, R. 2003. Structural acclimation and radiation regime of silver fir (Abies alba Mill.) shoots along a light gradient. Plant Cell Environ. 26:429–442.

    Article  Google Scholar 

  • Chen, J. M. 1996. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric. For. Meteorol. 80:135–163.

    Article  Google Scholar 

  • Chen, J. M., and Black, T. A. 1992. Defining leaf area index for non-flat leaves. Plant Cell Environ. 15:421–429.

    Article  Google Scholar 

  • Chen, S. G., Ceulemans, R., and Impens, I. 1994. A fractal-based Populus canopy structure model for the calculation of light interception. For. Ecol. Manage. 69:97–110.

    Article  Google Scholar 

  • Chen, S. G., Shao, B. Y., and Impens, I. 1993. A computerised numerical experimental study of average solar radiation penetration in plant stands. J. Quant. Spectrosc. Radiat. Transfer. 49:651–658.

    Article  Google Scholar 

  • Cooter, E. J., and Dhakhwa, G. B. 1995. A solar radiation model for use in biological applications in the south and southeast USA. Agric. For. Meteorol. 78:31–51.

    Article  Google Scholar 

  • Courbaud, B., de Coligny, F., and Cordonnier, T. 2003. Simulating radiation distribution in a heterogeneous Norway spruce forest on a slope. Agric. For. Meteorol. 116:1–18.

    Article  Google Scholar 

  • Cowan, I. R. 1968. The interception and absorption of radiation in plant stands. J. Appl. Ecol. 5:367–379.

    Article  Google Scholar 

  • Disney, M. I., Lewis, P., and North, P. R. J. 2000. Monte Carlo ray tracing in optical canopy reflectance modeling. Remote Sens, Rev, 18:163–196.

    Google Scholar 

  • Dubayah, R., and Rich, P. M. 1995. Topographic solar radiation model for GIS. Int. J. Geograph. Informat. Sci. 9:405–419.

    Article  Google Scholar 

  • Ehleringer, J. R., and Björkman, O. 1978. Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36:151–162.

    Article  Google Scholar 

  • Ellsworth, D. S., and Reich, P. B. 1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178.

    Article  Google Scholar 

  • Ercoli, L., Mariotti, M., Masoni, A., and Massantini, F. 1993. Relationship between nitrogen and chlorophyll content and spectral properties in maize leaves. Eur. J. Agron. 2:113–117.

    Google Scholar 

  • Evans, G. C., and Coombe, D. E. 1959. Hemispherical and woodland canopy photography and the light climate. J. Ecol. 47:103–113.

    Article  Google Scholar 

  • Farque, L., Sinoquet, H., and Colin, F. 2001. Canopy structure and light interception in Quercus petraea seedlings in relation to light regime and plant density. Tree Physiol. 21:1257–1267.

    CAS  PubMed  Google Scholar 

  • Fernandez, D., and Castrillo, M. 1999. Maize leaf rolling initiation. Photosynthetica 37:493–497.

    Article  Google Scholar 

  • Fleck, S., Niinemets, Ü., Cescatti, A., and Tenhunen, J. D. 2003. Three-dimensional lamina architecture alters light harvesting efficiency in Fagus: A leaf-scale analysis. Tree Physiol. 23:577–589.

    PubMed  Google Scholar 

  • Friday, J. B., and Fownes, J. H. 2001. A simulation model for hedgerow light interception and growth. Agric. For. Meteorol. 108:29–43.

    Article  Google Scholar 

  • Gastellu-Etchegorry, J. P., Demarez, V., Pinel, V., and Zagolski, F. 1996. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens. Environ. 58:131–156.

    Article  Google Scholar 

  • Gijzen, H., and Goudriaan, J. 1989. A flexible and explanatory model of light distribution and photosynthesis in row crops. Agric. For. Meteorol. 48:1–20.

    Article  Google Scholar 

  • Gu, L., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M., and Dowty, P. R. 2002. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. 107:doi:10.1029/2001JD001242.

    Google Scholar 

  • Gu, L., Baldocchi, D. D., Wofsy, S. C., Munger, J. W., Michalsky, J. J., Urbanski, S. P., and Boden, T. A. 2003. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science 299:2035–2038.

    Article  PubMed  CAS  Google Scholar 

  • Gutschick, V. P. 1991. Joining leaf photosynthesis models and canopy photon-transport models. In: Photon-Vegetation Interaction: Applications in Optical Remote Sensing and Plant Ecology. R. B. Myneni and J. Ross (eds.), pp. 501–535. Berlin: Springer-Verlag.

    Google Scholar 

  • Hale, S. E., and Edwards, C. 2002. Comparison of film and digital hemispherical photography across a wide range of canopy densities. Agric. For. Meteorol. 112:51–56.

    Article  Google Scholar 

  • Hikosaka, K., and Hirose, T. 1997. Leaf angle as a strategy for light competition: Optimal and evolutionary stable light extinction coefficient within a leaf canopy. Ecoscience 4:501–507.

    Google Scholar 

  • Hirose, T., Werger, M. J. A., and van Rheenen, J. W. A. 1989. Canopy development and leaf nitrogen distribution in a stand of Carex acutiformis. Ecology 70:1610–1618.

    Article  Google Scholar 

  • Hodánová, D. 1972. Structure and development of sugar beet canopy. I. Leaf area-leaf angle relations. Photosynthetica 6:401–409.

    Google Scholar 

  • Holmes, M. G., and Keiller, D. R. 2002. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: A comparison of a range of species. Plant Cell Environ. 25:85–93.

    Article  CAS  Google Scholar 

  • Jordan, D. N., and Smith, W. K. 1993. Simulated influence of leaf geometry on sunlight interception and photosynthesis in conifer needles. Tree Physiol. 13:29–39.

    PubMed  Google Scholar 

  • Kimes, D. S., and Kirchner, J. A. 1982. Radiative transfer model for heterogeneous 3-D scenes. Appl. Opt. 21:4119–4129.

    Article  CAS  PubMed  Google Scholar 

  • Kimes, D., Gastellu-Etchegorry, J., and Estéve, P. 2002. Recovery of forest canopy characteristics through inversion of a complex 3D model. Remote Sens. Environ. 79:320–328.

    Article  Google Scholar 

  • Knyazikhin, Y., and Marshak, A. 1991. Fundamental equations of radiative transfer in leaf canopies and iterative methods for their solution. In: Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology. R. B. Myneni and J. Ross (eds.), pp. 9–44. Berlin: Springer-Verlag.

    Google Scholar 

  • Kursar, T. A., and Coley, P. D. 1992. The consequences of delayed greening during leaf development for light absorption and light use efficiency. Plant Cell Environ. 15:901–909.

    Article  Google Scholar 

  • Kuuluvainen, T., and Pukkala, T. 1989. Simulation of within-tree and between-tree shading of direct radiation in a forest canopy: Effect of crown shape and sun elevation. Ecol. Model. 49:89–100.

    Article  Google Scholar 

  • Kuusk, A. 1992. Absorption profiles of shortwave radiation in a vegetation canopy. Agric. For. Meteorol. 62:191–204.

    Article  Google Scholar 

  • Kuusk, A., Nilson, T., and Paas, M. 2002. Angular distribution of radiation beneath forest canopies using a CCD-radiometer. Agric. For. Meteorol. 110:259–273.

    Article  Google Scholar 

  • Lacaze, R., Chen, J. M., Roujean, J.-L., and Leblanc, S. G. 2002. Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument. Remote Sens. Environ. 79:84–95.

    Article  Google Scholar 

  • Lai, C. T., Katul, G. G., Ellsworth, D. S., and Oren, R. 2000. Modelling vegetation-atmosphere CO2 exchange by a coupled Eulerian-Lagrangian approach. Bound.-Layer Meteorol. 95:91–122.

    Article  Google Scholar 

  • Lang, A. R. G. 1991. Application of some of Cauchy’s theorems to estimation of surface areas of leaves, needles and branches of plants, and light transmittance. Agric. For. Meteorol. 55:191–212.

    Article  Google Scholar 

  • Law, B. E., Cescatti, A., and Baldocchi, D. D. 2001. Leaf area distribution and radiative transfer in open-canopy forests: Implications to mass and energy exchange. Tree Physiol. 21:777–787.

    CAS  PubMed  Google Scholar 

  • Leakey, A. D. B., Press, M. C., Scholes, J. D., and Watling, J. R. 2002. Relative enhancement of photosynthesis and growth at elevated CO2 is greater under sunflecks than uniform irradiance in a tropical rain forest tree seedling. Plant Cell Environ. 25:1701–1714.

    Article  Google Scholar 

  • Leverenz, J. W., and Hinckley, T. M. 1990. Shoot structure, leaf area index and productivity of evergreen conifer stands. Tree Physiol. 6:135–149.

    PubMed  Google Scholar 

  • Leverenz, J. W., Whitehead, D., and Stewart, G. H. 2000. Quantitative analyses of shade-shoot architecture of conifers native to New Zealand. Trees. 15:42–49.

    Article  Google Scholar 

  • Macfarlane, C., Coote, M., White, D. A., and Adams, M. A. 2000. Photographic exposure affects indirect estimation of leaf area in plantations of Eucalyptus globulus Labill. Agric. For. Meteorol. 100:155–168.

    Article  Google Scholar 

  • Masoni, A., Ercoli, L., Mariotti, M., and Barberi, P. 1994. Changes in spectral properties of ageing and senescing maize and sunflower leaves. Physiol. Plant 91:334–338.

    Article  Google Scholar 

  • Miller, E. E., and Norman, J. M. 1971. A sunfleck theory for plant canopies. I. Length of sunlit segments along a transect. Agron. J. 63:735–739.

    Google Scholar 

  • Monsi, M., and Saeki, T. 1953. Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jap. J. Bot. 14:22–52.

    Google Scholar 

  • Myneni, R. B. 1991. Modelling radiative transfer and photosynthesis in three-dimensional vegetation canopies. Agric. For. Meteorol. 55:323–344.

    Article  Google Scholar 

  • Myneni, R. B., and Impens, I. 1985. A procedural approach for studying the radiation regime of infinite and truncated foliage spaces. Part I. Theoretical considerations. Agric. For. Meteorol. 33:323–337.

    Article  Google Scholar 

  • Myneni, R. B., and Ross, J. (eds.) 1991. Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Berlin: Springer-Verlag.

    Google Scholar 

  • Nandy, P., Thome, K., and Biggar, S. 2001. Characterization and field use of a CCD camera system for retrieval of bidirectional reflectance distribution function. J. Geophys. Res. 106:957–966.

    Article  Google Scholar 

  • Niinemets, Ü. 1997. Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species. Funct. Ecol. 11:518–531.

    Article  Google Scholar 

  • Niinemets, Ü., and Fleck, S. 2002. Petiole mechanics, leaf inclination, morphology, and investment in support in relation to light availability in the canopy of Liriodendron tulipifera. Oecologia 132:21–33.

    Article  Google Scholar 

  • Niinemets, Ü., and Kull, O. 1995a. Effects of light availability and tree size on the architecture of assimilative surface in the canopy of Picea abies: Variation in shoot structure. Tree Physiol. 15:791–798.

    Google Scholar 

  • Niinemets, Ü., and Kull, O. 1995b. Effects of light availability and tree size on the architecture of assimilative surface in the canopy of Picea abies: Variation in needle morphology. Tree Physiol. 15:307–315.

    PubMed  Google Scholar 

  • Niinemets, Ü., Ellsworth, D. S., Lukjanova, A., and Tobias, M. 2001. Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiol. 21:1231–1244.

    CAS  PubMed  Google Scholar 

  • Niinemets, Ü., Cescatti, A., Lukjanova, A., Tobias, M., and Truus, L. 2002a. Modification of light-acclimation of Pinus sylvestris shoot architecture by site fertility. Agric. For. Meteorol. 111:121–140.

    Article  Google Scholar 

  • Niinemets, Ü., Ellsworth, D. S., Lukjanova, A., and Tobias, M. 2002b. Dependence of needle architecture and chemical composition on canopy light availability in three North American Pinus species with contrasting needle length. Tree Physiol. 22:747–761.

    PubMed  Google Scholar 

  • Niinemets, Ü., Al Afas, N., Cescatti, A., Pellis, A., and Ceulemans, R. 2004a. Petiole length and biomass investments in support modify light-interception efficiency in dense poplar plantations. Tree Physiol. 24:141–154.

    PubMed  Google Scholar 

  • Niinemets, Ü., Cescatti, A., and Christian, R. 2004b. Constraints on light interception efficiency due to shoot architecture in broad-leaved Nothofagus species. Tree Physiol. (in press).

    Google Scholar 

  • Niklas, K. J. 1988. The role of phyllotactic pattern as a “developmental constraint” on the interception of light by leaf surfaces. Evolution 42:1–16.

    Article  Google Scholar 

  • Niklas, K. J. 1989. The effect of leaf-lobing on the interception of direct solar radiation. Oecologia 80:59–64.

    Article  Google Scholar 

  • Niklas, K. J. 1999. Research review. A mechanical perspective on foliage leaf form and function. New Phytol. 143:19–31.

    Article  Google Scholar 

  • Nilson, T. 1971. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 8:25–38.

    Article  Google Scholar 

  • Nilson, T. 1992. Radiative transfer in nonhomogeneous plant canopies. Adv. Bioclimat. 1:59–88.

    Google Scholar 

  • Nilson, T., and Ross, J. 1997. Modeling radiative transfer through forest canopies: Implications for canopy photosynthesis and remote sensing. In: The Use of Remote Sensing in the Modeling of Forest Productivity, H. L. Gholz, K. Nakane, and H. Shimoda (eds.), pp. 23–60. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Norman, J. M., and Jarvis, P. G. 1974. Photosynthesis in Sitka spruce [Picea sitchensis (Bong.) Carr.]. III. Measurements of canopy structure and interception of radiation. J. Appl. Ecol. 11:375–398.

    Article  Google Scholar 

  • Norman, J. M., and Jarvis, P. G. 1975. Photosynthesis in Sitka spruce [Picea sitchensis (Bong.) Carr.]. V. Radiation penetration theory and a test case. J. Appl. Ecol. 12:839–878.

    Article  Google Scholar 

  • Norman, J. M., and Welles, J. M. 1983. Radiative transfer in an array of canopies. Agron. J. 75:481–488.

    Article  Google Scholar 

  • Norman, J. M., Miller, E. E., and Tanner, C. B. 1971. Light intensity and sunfleck-size distributions in plant canopies. Agron. J. 63:743–748.

    Article  Google Scholar 

  • North, P. R. J. 1996. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Transact. Geosci. Remote Sens. 34:946–955.

    Article  Google Scholar 

  • Oker-Blom, P. 1984. Penumbral effects of within-plant and between-plant shading on radiation distribution and leaf photosynthesis: A Monte-Carlo simulation. Photosynthetica 18:522–528.

    Google Scholar 

  • Oker-Blom, P., and Kellomäki, S. 1982. Effect of angular distribution of foliage on light absorption and photosynthesis in the plant canopy: Theoretical computations. Agric. Meteorol. 26:105–116.

    Article  Google Scholar 

  • Oker-Blom, P., and Smolander, H. 1988. The ratio of shoot silhouette to total needle area in Scots pine. For. Sci. 34:894–906.

    Google Scholar 

  • Olseth, J. A., and Skartveit, A. 1997. Spatial distribution of photosynthetically active radiation over complex topography. Agric. For. Meteorol. 86:205–214.

    Article  Google Scholar 

  • Palmer, J. W. 1989. The effects of row orientation, tree height, time of year and latitude on light interception and distribution in model apple hedgerow canopies. J. Hort. Sci. 64:137–145.

    Google Scholar 

  • Palmroth, S., Palva, L., Stenberg, P., and Kotisaari, A. 1999. Fine scale measurement and simulation of penumbral radiation formed by a pine shoot. Agric. For. Meteorol. 95:15–25.

    Article  Google Scholar 

  • Palva, L., Markkanen, T., Siivola, E., Garam, E., Linnavuo, M., Nevas, S., Manoochehri, F., Palmroth, S., Rajala, K., Ruotoistenmäki, H., Vuorivirta, T., Seppälä, I., Vesala, T., Hari, P., and Sepponen, R. 2001. Tree scale distributed multipoint measuring system of photosynthetically active radiation. Agric. For. Meteorol. 106:71–80.

    Article  Google Scholar 

  • Pearcy, R. W., and Yang, W. 1996. A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants. Oecologia 108:1–12.

    Article  Google Scholar 

  • Pearcy, R. W., and Yang, W. 1998. The functional morphology of light capture and carbon gain in the Redwood forest understorey plant, Adenocaulon bicolor Hook. Funct. Ecol. 12:543–552.

    Article  Google Scholar 

  • Pinty, B., Gobron, N., Widlowski, J.-L., Gerstl, S. A. W., Verstraete, M. M., Antunes, M., Bacour, C., Gascon, F., Gastellu, J.-P., Goel, N., Jacquemoud, S., North, P., Qin, W., and Thompson, R. 2001. Radiation transfer model intercomparison (RAMI) exercise. J. Geophys. Res. 106:11937–11956.

    Article  Google Scholar 

  • Pinty, B., Widlowski, J.-L., Gobron, N., Verstraete, M. M., and Diner, D. J. 2002. Uniqueness of multiangular measurements. Part 1. An Indicator of subpixel surface heterogeneity from MISR. IEEE Transact. Geosci. Remote Sens. 40:1560–1573.

    Article  Google Scholar 

  • Planchais, I., and Sinoquet, H. 1998. Foliage determinants of light interception in sunny and shaded branches of Fagus sylvatica L. Agric. For. Meteorol. 89:241–253.

    Article  Google Scholar 

  • Rakocevic, M., Sinoquet, H., Christophe, A., and Varlet-Grancher, C. 2000. Assessing the geometric structure of a white clover (Trifolium repens L.) canopy using 3-D digitising. Ann. Bot. 86:519–526.

    Article  Google Scholar 

  • Revfeim, K. J. A. 1978. A simple procedure for estimating global daily radiation on any surface. J. Appl. Meteorol. 17:1126–1131.

    Article  Google Scholar 

  • Roden, J. S., and Pearcy, R. W. 1993. Effect of leaf flutter on the light environment of poplars. Oecologia 93:201–207.

    Article  Google Scholar 

  • Roderick, M. L., Berry, S. L., and Noble, I. R. 2000. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Funct. Ecol. 14:423–437.

    Article  Google Scholar 

  • Roderick, M. L., Farquhar, G. D., Berry, S. L., and Noble, I. R. 2001. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30.

    Article  Google Scholar 

  • Ross, J. 1981. The Radiation Regime and Architecture of Plant Stands. The Hague: Dr. W. Junk.

    Google Scholar 

  • Ross, J., Sulev, M., and Saarelaid, P. 1998. Statistical treatment of the PAR variability and its application to willow coppice. Agric. For. Meteorol. 91:1–21.

    Article  Google Scholar 

  • Shabanov, N. V., Knyazikhin, Y., Baret, F., and Myneni, R. B. 2000. Stochastic modeling of radiation regime in discontinuous vegetation canopies. Remote Sens. Environ. 74:125–144.

    Article  Google Scholar 

  • Sinclair, R., and Thomas, D. A. 1970. Optical properties of leaves of some species in arid South Australia. Am. J. Bot. 18:261–273.

    Article  Google Scholar 

  • Smith, W. K., and Carter, G. A. 1988. Shoot structural effects on needle temperatures and photosynthesis in conifers. Am. J. Bot. 75:496–500.

    Article  Google Scholar 

  • Smith, W. K., Knapp, A. K., and Reiners, W. A. 1989. Penumbral effects on sunlight penetration in plant communities. Ecology 70:1603–1609.

    Article  Google Scholar 

  • Smolander, H., Oker-Blom, P., Ross, J., Kellomäki, S., and Lahti, T. 1987. Photosynthesis of a Scots pine shoot: Test of a shoot photosynthesis model in a direct radiation field. Agric. For. Meteorol. 39:67–80.

    Article  Google Scholar 

  • Spitters, C. J. T. 1986. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part II. Calculation of canopy photosynthesis. Agric. For. Meteorol. 38:231–242.

    Article  Google Scholar 

  • Stenberg, P. 1995. Penumbra in within-shoot and between-shoot shading in conifers and its significance for photosynthesis. Ecol. Model. 77:215–231.

    Article  CAS  Google Scholar 

  • Stenberg, P., Kuuluvainen, T., Kellomäki, S., Grace, J. C., Jokela, E. J., and Gholz, H. L. 1994. Crown structure, light interception and productivity of pine trees and stands. In: Environmental Constraints on the Structure and Productivity of Pine Forest Ecosystems: A Comparative Analysis. H. L. Gholz, S. Linder, and R. E. McMurtrie (eds.), pp. 20–34. Copenhagen: Munksgaard International Booksellers and Publishers.

    Google Scholar 

  • Stenberg, P., Smolander, H., Sprugel, D. G., and Smolander, S. 1998. Shoot structure, light interception, and distribution of nitrogen in an Abies amabilis canopy. Tree Physiol. 18:759–767.

    PubMed  Google Scholar 

  • St-Jacques, C., Labrecque, M., and Bellefleur, P. 1991. Plasticity of leaf absorptance in some broadleaf tree seedlings. Bot. Gaz. 152:195–202.

    Article  Google Scholar 

  • Takenaka, A. 1994. Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecol. Res. 9:109–114.

    Article  Google Scholar 

  • Tanner, V., and Eller, B. M. 1986. Veränderungen der spektralen Eigenschaften der Blätter der Buche (Fagus sylvatica L.) von Laubaustrieb bis Laubfall. Allg. Forst Jagdztg. 157:108–117.

    Google Scholar 

  • Thomas, S. C., and Winner, W. E. 2000. A rotated ellipsoidal angle density function improves estimation of foliage inclination distributions in forest canopies. Agric. For. Meteorol. 100:19–24.

    Article  Google Scholar 

  • Thornton, P. E., Hasenauer, H., and White, M. A. 2000. Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: An application over complex terrain in Austria. Agric. For. Meteorol. 104:255–271.

    Article  Google Scholar 

  • Tian, Y. Q., Davies-Colley, R. J., Gong, P., and Thorrold, B. W. 2001. Estimating solar radiation on slopes of arbitrary aspect. Agric. For. Meteorol. 109:67–74.

    Article  Google Scholar 

  • Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., and Briggs, J. M. 1999. Relationships between leaf area index and TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 70:52–68.

    Article  Google Scholar 

  • Utsugi, H. 1999. Angle distribution of foliage in individual Chamaecyparis obtusa canopies and effect of angle on diffuse light penetration. Trees 14:1–9.

    Article  Google Scholar 

  • Valladares, F., and Brites, D. 2004. Leaf phyllotaxis: Does it really affect light capture? Plant Ecol. (in press).

    Google Scholar 

  • Valladares, F., and Pearcy, R. W. 1998. The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem., a Californian chaparral shrub. Oecologia 114:1–10.

    Article  Google Scholar 

  • Valladares, F., and Pearcy, R. W. 1999. The geometry of light interception by shoots of Heteromeles arbutifolia: Morphological and physiological consequences for individual leaves. Oecologia 121:171–182.

    Article  Google Scholar 

  • Valladares, F., and Pugnaire, F. I. 1999. Tradeoffs between irradiance capture and avoidance in semi-arid environments assessed with a crown architecture model. Ann. Bot. 83:459–469.

    Article  Google Scholar 

  • van Gardingen, P. R., Jackson, G. E., Hernandez-Daumas, S., Russell, G., and Sharp, L. 1999. Leaf area index estimates obtained for clumped canopies using hemispherical photography. Agric. For. Meteorol. 94:243–257.

    Article  Google Scholar 

  • Vesala, T., Markkanen, T., Palva, L., Siivola, E., Palmroth, S., and Hari, P. 2000. Effect of variations of PAR on CO2 exchange estimation for Scots pine. Agric. For. Meteorol. 100:337–347.

    Article  Google Scholar 

  • Wagner, S. 1998. Calibration of grey values of hemispherical photographs for image analysis. Agric. For. Meteorol. 90:103–117.

    Article  Google Scholar 

  • Wagner, S. 2001. Relative radiance measurements and zenith angle dependent segmentation in hemispherical photography. Agric. For. Meteorol. 107:103–115.

    Article  Google Scholar 

  • Walter-Shea, E. A., and Norman, J. M. 1991. Leaf optical properties. In: Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology. R. B. Myneni and J. Ross (eds.), pp. 229–252. Berlin: Springer-Verlag.

    Google Scholar 

  • Wang, H., and Baldocchi, D. D. 1989. A numerical model for stimulating the radiation regime within a deciduous forest canopy. Agric. For. Meteorol. 46:313–337.

    Article  Google Scholar 

  • Wang, S., Chen, W. J., and Cihlar, J. 2002. New calculation methods of diurnal distribution of solar radiation and its interception by canopy over complex terrain. Ecol. Model. 155:191–204.

    Article  Google Scholar 

  • Wang, Y. P., and Jarvis, P. G. 1990. Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce: Application of a model (MAESTRO). Tree Physiol. 7:297–316.

    PubMed  Google Scholar 

  • Wang, Y.-P., and Leuning, R. 1998. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. I. Model description and comparison with a multi-layered model. Agric. For. Meteorol. 91:89–111.

    Article  Google Scholar 

  • Weiss, M., Baret F., Smith, G. J., Jonckheere, I., and Coppin, P. 2004. Review of methods for in situ leaf area index (LAI) determination. Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 121:37–53.

    Article  Google Scholar 

  • Welles, J. M. 1990. Some indirect methods for evaluating canopy structure. Remote Sens. Environ. 5:31–43.

    Google Scholar 

  • Werner, C., Ryel, R. J., Correia, O., and Beyschlag, W. 2001. Structural and functional variability within the canopy and its relevance for carbon gain and stress avoidance. Acta Oecol. 22:129–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Cescatti, A., Niinemets, Ü. (2004). Leaf to Landscape. In: Smith, W.K., Vogelmann, T.C., Critchley, C. (eds) Photosynthetic Adaptation. Ecological Studies, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-27267-4_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-27267-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22079-6

  • Online ISBN: 978-0-387-27267-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics