Skip to main content

Biological Clock Control of Glucose Metabolism

Timing Metabolic Homeostasis

  • Chapter
Neuroendocrine Correlates of Sleep/Wakefulness

Abstract

The development of the concept of homeostasis began in the mid 19th century, when Claude Bernard (1813–1878) claimed that ‘la fixeté du milieu interieur' is essential for higher organisms to survive in an ever changing environment. “Standing or staying the same” is the literal meaning of the term homeostasis, which was introduced later by Walter B. Cannon (1871-1945) and derived from the Greek words homeios (the same) and stasis (staying). However, as Cannon emphasized, homeostasis does not mean something set and immobile that stays exactly the same all the time. In his words, homeostasis “means a condition that may vary, but which is relatively constant”. This definition was refined by Donald C. Jackson (1987): “Homeostasis is znot a single optimal control condition but rather a variety or continuum that varies with the animal's circumstances. Set points or regulated values are not fixed, but may change depending on ambient conditions or because of changing physiological conditions or demands.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore, R. Y. & Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42, 201–6 (1972).

    Article  PubMed  CAS  Google Scholar 

  2. Stephan, F. K. & Zucker, I. Circadian rhythms in drinking behavior and loco-motor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69, 1583–6 (1972).

    Article  PubMed  CAS  Google Scholar 

  3. Reppert, S. M. et al. Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey. J Neurosci 1, 1414–25 (1981).

    PubMed  CAS  Google Scholar 

  4. Aschoff, J. & Wever, R. Spontanperiodik des Menschen bei ausschluss aller Zeitgeber. Naturwissenschaften 49, 337–342 (1962).

    Article  Google Scholar 

  5. Abe, M. et al. Circadian rhythms in isolated brain regions. J Neurosci 22, 350–6 (2002).

    PubMed  CAS  Google Scholar 

  6. Groos, G. A. & Meijer, J. H. Effects of illumination on suprachiasmatic nucleus electrical discharge. Ann N Y Acad Sci 453, 134–46 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. Meijer, J. H. et al. Light entrainment of the mammalian biological clock. Prog Brain Res 111, 175–90 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–70 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. Freedman, M. S. et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284, 502–4 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–41 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. Noshiro, M. et al. Rhythmic expression of DEC1 and DEC2 in peripheral tissues: DEC2 is a potent suppressor for hepatic cytochrome P450s opposing DBP. Genes Cells 9, 317–29 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. Honma, S., Shirakawa, T., Katsuno, Y., Namihira, M. & Honma, K. Circadian periods of single suprachiasmatic neurons in rats. Neurosci Lett 250, 157–60 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. Watts, A. G., Swanson, L. W. & Sanchez-Watts, G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258, 204–29 (1987).

    Article  PubMed  CAS  Google Scholar 

  14. Leak, R. K. & Moore, R. Y. Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433, 312–34 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. Van der Beek, E. M., Horvath, T. L., Wiegant, V. M., Van den Hurk, R. & Buijs, R. M. Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol 384, 569–79 (1997).

    Article  PubMed  Google Scholar 

  16. De la Iglesia, H. O., Blaustein, J. D. & Bittman, E. L. The suprachiasmatic area in the female hamster projects to neurons containing estrogen receptors and GnRH. Neuroreport 6, 1715–22 (1995).

    Article  PubMed  Google Scholar 

  17. Choi, S., Wong, L. S., Yamat, C. & Dallman, M. F. Hypothalamic ventromedial nuclei amplify circadian rhythms: do they contain a food-entrained endogenous oscillator? J Neurosci 18, 3843–52 (1998).

    PubMed  CAS  Google Scholar 

  18. Buijs, R. M., Markman, M., Nunes-Cardoso, B., Hou, Y. X. & Shinn, S. Projections of the suprachiasmatic nucleus to stress-related areas in the rat hypothalamus: a light and electron microscopic study. J Comp Neurol 335, 42–54 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. Kalsbeek, A., Fliers, E., Franke, A. N., Wortel, J. & Buijs, R. M. Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology 141, 3832–41 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. Buijs, R. M., Chun, S. J., Niijima, A., Romijn, H. J. & Nagai, K. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol 431, 405–23 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. Gerendai, I., Toth, I. E., Boldogkoi, Z., Medveczky, I. & Halasz, B. CNS structures presumably involved in vagal control of ovarian function. J Auton Nerv Syst 80, 40–5 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. Larsen, P. J., Enquist, L. W. & Card, J. P. Characterization of the multisynaptic neuronal control of the rat pineal gland using viral transneuronal tracing. Eur J Neurosci 10, 128–45 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. Swanson, L. W. & Kuypers, H. G. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194, 555–70 (1980).

    Article  PubMed  CAS  Google Scholar 

  24. Buijs, R. M. et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11, 1535–44 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. Sakurada, S. et al. Autonomic and behavioural thermoregulation in starved rats. J Physiol 526 Pt 2, 417–24 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. Aston-Jones, G., Chen, S., Zhu, Y. & Oshinsky, M. L. A neural circuit for circadian regulation of arousal. Nat Neurosci 4, 732–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. Chou, T. C. et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23, 10691–702 (2003).

    PubMed  CAS  Google Scholar 

  28. Kalsbeek, A. et al. GABA receptors in the region of the dorsomedial hypothalamus of rats are implicated in the control of melatonin and corticosterone release. Neuroendocrinology 63, 69–78 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. Brugger, M. Fresstrieb als hypothalamisches symptom. Helv Physiol Acta 1, 183–189 (1943).

    Google Scholar 

  30. Larsson, S. On the hypothalamic organisation of the nervous mechanism regulating food intake. Acta Physiol Scand Suppl 32, 7–63 (1954).

    PubMed  CAS  Google Scholar 

  31. Bellinger, L. L. & Bernardis, L. L. The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies. Physiol Behav 76, 431–42 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. Bernardis, L. L. & Bellinger, L. L. The lateral hypothalamic area revisited: ingestive behavior. Neurosci Biobehav Rev 20, 189–287 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. Ono, T., Sasaki, K. & Shibata, R. Diurnal-and behaviour-related activity of ventromedial hypothalamic neurones in freely behaving rats. J Physiol 394, 201–20 (1987).

    PubMed  CAS  Google Scholar 

  34. Ono, T., Sasaki, K. & Shibata, R. Feeding-and chemical-related activity of ventromedial hypothalamic neurones in freely behaving rats. J Physiol 394, 221–37 (1987).

    PubMed  CAS  Google Scholar 

  35. Buijs, R. M., Van Eden, C. G., Goncharuk, V. D. & Kalsbeek, A. The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 177, 17–26 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. Harmar, A. J. An essential role for peptidergic signalling in the control of circadian rhythms in the suprachiasmatic nuclei. J Neuroendocrinol 15, 335–8 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 291, 490–3 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. Storch, K. F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–5 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. Young, M. E., Razeghi, P. & Taegtmeyer, H. Clock genes in the heart: characterization and attenuation with hypertrophy. Circ Res 88, 1142–50 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. Muhlbauer, E., Wolgast, S., Finckh, U., Peschke, D. & Peschke, E. Indication of circadian oscillations in the rat pancreas. FEBS Lett 564, 91–6 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. Terazono, H. et al. Adrenergic regulation of clock gene expression in mouse liver. Proc Natl Acad Sci U S A 100, 6795–800 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. Sakamoto, K. et al. Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J Biol Chem 273, 27039–42 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. Akhtar, R. A. et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12, 540–50 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. Yoo, S. H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101, 5339–46 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. Stephan, F. K., Swann, J. M. & Sisk, C. L. Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav Neural Biol 25, 346–63 (1979).

    Article  PubMed  CAS  Google Scholar 

  47. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14, 2950–2961 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. Schibler, U., Ripperger, J. & Brown, S. A. Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18, 250–60 (2003).

    Article  PubMed  Google Scholar 

  49. Diaz-Munoz, M., Vazquez-Martinez, O., Aguilar-Roblero, R. & Escobar, C. Anticipatory changes in liver metabolism and entrainment of insulin, glucagon, and corticosterone in food-restricted rats. Am J Physiol Regul Integr Comp Physiol 279, R2048–56 (2000).

    PubMed  CAS  Google Scholar 

  50. Davidson, A. J. & Stephan, F. K. Plasma glucagon, glucose, insulin, and motilin in rats anticipating daily meals. Physiol Behav 66, 309–15 (1999).

    Article  PubMed  CAS  Google Scholar 

  51. Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510–4 (2001).

    Article  PubMed  CAS  Google Scholar 

  52. Stephan, F. K. & Davidson, A. J. Glucose, but not fat, phase shifts the feeding-entrained circadian clock. Physiol Behav 65, 277–88 (1998).

    Article  PubMed  CAS  Google Scholar 

  53. Nagai, K., Fujii, T., Inoue, S., Takamura, Y. & Nakagawa, H. Electrical stimulation of the suprachiasmatic nucleus of the hypothalamus causes hyperglycemia. Horm Metab Res 20, 37–9. (1988).

    Article  PubMed  CAS  Google Scholar 

  54. Fujii, T., Inoue, S., Nagai, K. & Nakagawa, H. Involvement of adrenergic mechanism in hyperglycemia due to SCN stimulation. Horm Metab Res 21, 643–5 (1989).

    Article  PubMed  CAS  Google Scholar 

  55. La Fleur, S. E., Kalsbeek, A., Wortel, J. & Buijs, R. M. A suprachiasmatic nucleus generated rhythm in basal glucose concentrations. J Neuroendocrinol 11, 643–52 (1999).

    Article  PubMed  Google Scholar 

  56. Bolli, G. B. et al. Demonstration of a dawn phenomenon in normal human volunteers. Diabetes 33, 1150–3 (1984).

    Article  PubMed  CAS  Google Scholar 

  57. La Fleur, S. E., Kalsbeek, A., Wortel, J., Fekkes, M. L. & Buijs, R. M. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50, 1237–43 (2001).

    Article  PubMed  Google Scholar 

  58. Lee, A., Ader, M., Bray, G. A. & Bergman, R. N. Diurnal variation in glucose tolerance. Cyclic suppression of insulin action and insulin secretion in normal-weight, but not obese, subjects. Diabetes 41, 742–9 (1992).

    Article  Google Scholar 

  59. Van Cauter, E. V. et al. Abnormal temporal patterns of glucose tolerance in obesity: relationship to sleep-related growth hormone secretion and circadian cortisol rhythmicity. J Clin Endocrinol Metab 79, 1797–805 (1994).

    Article  PubMed  Google Scholar 

  60. Gerich, J. E., Meyer, C., Woerle, H. J. & Stumvoll, M. Renal gluconeogenesis: it importance in human glucose homeostasis. Diabetes Care 24, 382–91 (2001).

    Article  PubMed  CAS  Google Scholar 

  61. Croset, M. et al. Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes 50, 740–6 (2001).

    Article  PubMed  CAS  Google Scholar 

  62. Matsuura, N., Cheng, J. S. & Kalant, N. Insulin control of hepatic glucose production. Can J Biochem 53, 28–36 (1975).

    Article  PubMed  CAS  Google Scholar 

  63. Gerich, J., Cryer, P. & Rizza, R. Hormonal mechanisms in acute glucose counterregulation: the relative roles of glucagon, epinephrine, norepinephrine, growth hormone, and cortisol. Metabolism 29, 1164–75 (1980).

    Article  PubMed  CAS  Google Scholar 

  64. Chiasson, J. L., Cherrington, A.D. Glucagon and Liver Glucose Output. in: Handbook of Experimental Pharmacology. Lefèbre (ed) 1, 361–381 (1983).

    Google Scholar 

  65. Samols, E., Bonner-Weir, S. & Weir, G. C. Intra-islet insulin-glucagon-somato-statin relationships. Clin Endocrinol Metab 15, 33–58 (1986).

    Article  PubMed  CAS  Google Scholar 

  66. Banarer, S., McGregor, V. P. & Cryer, P. E. Intraislet hyperinsulinemia prevents the glucagon response to hypoglycemia despite an intact autonomic response. Diabetes 51, 958–65 (2002).

    Article  PubMed  CAS  Google Scholar 

  67. Ahren, B., Nobin, A. & Schersten, B. Insulin and C-peptide secretory responses to glucagon in man: studies on the dose-response relationships. Acta Med Scand 221, 185–90 (1987).

    Article  PubMed  CAS  Google Scholar 

  68. Sacca, L., Vigorito, C., Cicala, M., Corso, G. & Sherwin, R. S. Role of gluconeogenesis in epinephrine-stimulated hepatic glucose production in humans. Am J Physiol 245, E294–302 (1983).

    PubMed  CAS  Google Scholar 

  69. Kahn, C. R., Goldfine, I. D., Neville, D. M., Jr. & De Meyts, P. Alterations in insulin binding induced by changes in vivo in the levels of glucocorticoids and growth hormone. Endocrinology 103, 1054–66 (1978).

    Article  PubMed  CAS  Google Scholar 

  70. Plaschke, K., Muller, D. & Hoyer, S. Effect of adrenalectomy and corticosterone substitution on glucose and glycogen metabolism in rat brain. J Neural Transm 103, 89–100 (1996).

    Article  PubMed  CAS  Google Scholar 

  71. Bernard, C. Lecons de Physiologie Appliquee a la Medicine (Bailiere, Paris, 1855).

    Google Scholar 

  72. La Fleur, S. E., Kalsbeek, A., Wortel, J. & Buijs, R.M. Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res 871, 50–6 (2000).

    Article  PubMed  Google Scholar 

  73. Card, J. P. Pseudorabies virus and the functional architecture of the circadian timing system. J Biol Rhythms 15, 453–61 (2000).

    PubMed  CAS  Google Scholar 

  74. Kreier, F. et al. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat-functional implications. J Clin Invest 110, 1243–50 (2002).

    PubMed  CAS  Google Scholar 

  75. Bamshad, M., Aoki, V. T., Adkison, M. G., Warren, W. S. & Bartness, T. J. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am J Physiol 275, R291–9 (1998).

    PubMed  CAS  Google Scholar 

  76. Scheer, F. A., Ter Horst, G. J., van Der Vliet, J. & Buijs, R. M. Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats. Am J Physiol Heart Circ Physiol 280, H1391–9 (2001).

    PubMed  CAS  Google Scholar 

  77. Sly, J. D., Colvill, L., McKinley, J. M. & Oldfield, J. B. Identification of neural projections from the forebrain to the kidney, using the virus pseudorabies. J Auton Nerv Syst 77, 73–82 (1999).

    Article  CAS  Google Scholar 

  78. Burcelin, R., Dolci, W. & Thorens, B. Glucose sensing by the hepatoportal sensor is GLUT2-dependent: in vivo analysis in GLUT2-null mice. Diabetes 49, 1643–8 (2000).

    Article  PubMed  CAS  Google Scholar 

  79. Conlee, R. K., Rennie, M. J. & Winder, W. W. Skeletal muscle glycogen content: diurnal variation and effects of fasting. Am J Physiol 231, 614–8 (1976).

    PubMed  CAS  Google Scholar 

  80. Gagliardino, J. J., Pessacq, M. T., Hernandez, R. E. & Rebolledo, O. R. Circadian variations in serum glucagon and hepatic glycogen and cyclic amp concentrations. J Endocrinol 78, 297–8 (1978).

    Article  PubMed  CAS  Google Scholar 

  81. Sollberger. The control of circadian glycogen rhythms. Ann. N.Y.Acad.Sci 117, 519–554 (1964).

    Article  PubMed  CAS  Google Scholar 

  82. Peret, J., Chanez, M. & Pascal, G. Schedule of protein ingestion and circadian rhythm of certain hepatic enzyme activities involved in glucose metabolism in the rat. Nutr Metab 20, 143–57 (1976).

    Article  PubMed  CAS  Google Scholar 

  83. Corssmit, E. P., Romijn, J. A. & Sauerwein, H. P. Review article: Regulation of glucose production with special attention to nonclassical regulatory mechanisms: a review. Metabolism 50, 742–55 (2001).

    Article  PubMed  CAS  Google Scholar 

  84. Gelfand, R. A., Sherwin, R.S. Glucagon and starvation. IN: Handbook of Experimental Pharmacology. Lefèbre (ed) 1, 223–237 (1983).

    Google Scholar 

  85. Margolis, R. N. & Curnow, R. T. The role of insulin and glucocorticoids in the regulation of hepatic glycogen metabolism: effect of fasting, refeeding, and adrenalectomy. Endocrinology 113, 2113–9 (1983).

    Article  PubMed  CAS  Google Scholar 

  86. Boden, G., Chen, X. & Urbain, J. L. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes 45, 1044–50 (1996).

    Article  PubMed  CAS  Google Scholar 

  87. Kida, K. et al. The circadian change of gluconeogenesis in the liver in vivo in fed rats. J Biochem (Tokyo) 88, 1009–13 (1980).

    PubMed  CAS  Google Scholar 

  88. Mlekusch, W., Paletta, B., Truppe, W., Paschke, E. & Grimus, R. Plasma concentrations of glucose, corticosterone, glucagon and insulin and liver content of metabolic substrates and enzymes during starvation and additional hypoxia in the rat. Horm Metab Res 13, 612–4 (1981).

    Article  PubMed  CAS  Google Scholar 

  89. Phillips, L. J. & Berry, L. J. Circadian rhythm of mouse liver phosphoenolpyruvate carboxykinase. Am J Physiol 218, 1440–4 (1970).

    PubMed  CAS  Google Scholar 

  90. Kalsbeek, A., La Fleur, S. E., van Heijningen, C. & Buijs, R. Suprachiasmatic GABA-ergic inputs to the PVN control plasma glucose concentrations in the rat via the sympathetic innervation of the liver. J Neurosci in press (2004).

    Google Scholar 

  91. Buijs, R. M. et al. The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol 464, 36–48 (2003).

    Article  PubMed  Google Scholar 

  92. Shimazu, T. & Fukuda, A. Increased activities of glycogenolytic enzymes in liver after splanchnic-nerve stimulation. Science 150, 1607–8 (1965).

    Article  PubMed  CAS  Google Scholar 

  93. Shimazu, T. & Amakawa, A. Regulation of glycogen metabolism in liver by the autonomic nervous system. 3. Differential effects of sympathetic-nerve stimulation and of catecholamines on liver phosphorylase. Biochim Biophys Acta 165, 349–56 (1968).

    CAS  Google Scholar 

  94. Seydoux, J., Brunsmann, M. J., Jeanrenaud, B. & Girardier, L. alpha-Sympathetic control of glucose output of mouse liver perfused in situ. Am J Physiol 236, E323–7 (1979).

    PubMed  CAS  Google Scholar 

  95. Pascoe, W. S., Smythe, G. A. & Storlien, L. H. 2-deoxy-D-glucose-induced hyperglycemia: role for direct sympathetic nervous system activation of liver glucose output. Brain Res 505, 23–8 (1989).

    Article  PubMed  CAS  Google Scholar 

  96. Takahashi, A., Ishimaru, H., Ikarashi, Y., Kishi, E. & Maruyama, Y. Effects of ventromedial hypothalamus stimulation on glycogenolysis in rat liver using in vivo microdialysis. Metabolism 46, 897–901 (1997).

    Article  PubMed  CAS  Google Scholar 

  97. Shimazu, T., Fukuda, A. & Ban, T. Reciprocal influences of the ventromedial and lateral hypothalamic nuclei on blood glucose level and liver glycogen content. Nature 210, 1178–9 (1966).

    Article  PubMed  CAS  Google Scholar 

  98. Lautt, W. W. & Wong, C. Hepatic parasympathetic neural effect on glucose balance in the intact liver. Can J Physiol Pharmacol 56, 679–82 (1978).

    Article  PubMed  CAS  Google Scholar 

  99. Shimazu, T. Regulation of glycogen metabolism in liver by the autonomic nervous system. V. Activation of glycogen synthetase by vagal stimulation. Biochim Biophys Acta 252, 28–38 (1971).

    PubMed  CAS  Google Scholar 

  100. Xue, C. et al. Isolated hepatic cholinergic denervation impairs glucose and glycogen metabolism. J Surg Res 90, 19–25 (2000).

    Article  PubMed  CAS  Google Scholar 

  101. Matsuhisa, M. et al. Important role of the hepatic vagus nerve in glucose uptake and production by the liver. Metabolism 49, 11–6 (2000).

    Article  PubMed  CAS  Google Scholar 

  102. Chen, C., Williams, P. F., Cooney, G. J. & Caterson, I. D. Diurnal rhythms of glycogen metabolism in the liver and skeletal muscle in gold thioglucose induced-obese mice with developing insulin resistance. Int J Obes Relat Metab Disord 16, 913–21 (1992).

    PubMed  CAS  Google Scholar 

  103. Marrino, P., Gavish, D., Shafrir, E. & Eisenberg, S. Diurnal variations of plasma lipids, tissue and plasma lipoprotein lipase, and VLDL secretion rates in the rat. A model for studies of VLDL metabolism. Biochim Biophys Acta 920, 277–84 (1987).

    PubMed  CAS  Google Scholar 

  104. La Fleur, S. E. et al. Autonomic projections to the liver are essential for the SCN-generated rhythm in plasma glucose concentrations. PHd thesis chapter 5 (2001).

    Google Scholar 

  105. Vizzard, M. A., Brisson, M. & de Groat, W. C. Transneuronal labeling of neurons in the adult rat central nervous system following inoculation of pseudorabies virus into the colon. Cell Tissue Res 299, 9–26 (2000).

    Article  PubMed  CAS  Google Scholar 

  106. Standish, A., Enquist, L. W., Escardo, J. A. & Schwaber, J. S. Central neuronal circuit innervating the rat heart defined by transneuronal transport of pseudorabies virus. J Neurosci 15, 1998–2012 (1995).

    PubMed  CAS  Google Scholar 

  107. Tiedgen, M. & Seitz, H. J. Dietary control of circadian variations in serum insulin, glucagon and hepatic cyclic AMP. J Nutr 110, 876–82 (1980).

    PubMed  CAS  Google Scholar 

  108. Vansant, G., Van Gaal, L., Van Acker, K. & De Leeuw, I. Importance of glucagon as a determinant of resting metabolic rate and glucose-induced thermogenesis in obese women. Metabolism 40, 672–5 (1991).

    Article  PubMed  CAS  Google Scholar 

  109. Moore, M. C. & Cherrington, A. D. Regulation of net hepatic glucose uptake: interaction of neural and pancreatic mechanisms. Reprod Nutr Dev 36, 399–406 (1996).

    Article  PubMed  CAS  Google Scholar 

  110. Ruiter, M. et al. The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes 52, 1709–15 (2003).

    Article  PubMed  CAS  Google Scholar 

  111. Luiten, P. G., ter Horst, G. J., Buijs, R. M. & Steffens, A. B. Autonomic innervation of the pancreas in diabetic and non-diabetic rats. A new view on intramural sympathetic structural organization. J Auton Nerv Syst 15, 33–44 (1986).

    Article  PubMed  CAS  Google Scholar 

  112. De Jong, A., Strubbe, J. H. & Steffens, A. B. Hypothalamic influence on insulin and glucagon release in the rat. Am J Physiol 233, E380–8 (1977).

    PubMed  Google Scholar 

  113. Kaneto, A., Kosaka, K. & Nakao, K. Effects of stimulation of the vagus nerve on insulin secretion. Endocrinology 80, 530–6 (1967).

    Article  PubMed  CAS  Google Scholar 

  114. Louis-Sylvestre, J. Preabsorptive insulin release and hypoglycemia in rats. Am J Physiol 230, 56–60 (1976).

    PubMed  CAS  Google Scholar 

  115. Jansen, A. S., Hoffman, J. L. & Loewy, A. D. CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res 766, 29–38 (1997).

    Article  PubMed  CAS  Google Scholar 

  116. Brunicardi, F. C., Shavelle, D. M. & Andersen, D. K. Neural regulation of the endocrine pancreas. Int J Pancreatol 18, 177–95 (1995).

    PubMed  CAS  Google Scholar 

  117. Ahren, B. Autonomic regulation of islet hormone secretion-implications for health and disease. Diabetologia 43, 393–410 (2000).

    Article  PubMed  CAS  Google Scholar 

  118. Li, Y., Jiang, Y. C. & Owyang, C. Central CGRP inhibits pancreatic enzyme secretion by modulation of vagal parasympathetic outflow. Am J Physiol 275, G957–63 (1998).

    PubMed  CAS  Google Scholar 

  119. Li, Y. & Owyang, C. Somatostatin inhibits pancreatic enzyme secretion at a central vagal site. Am J Physiol 265, G251–7 (1993).

    PubMed  CAS  Google Scholar 

  120. Williams, G. et al. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav 74, 683–701 (2001).

    Article  PubMed  CAS  Google Scholar 

  121. Moriguchi, T., Sakurai, T., Nambu, T., Yanagisawa, M. & Goto, K. Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci Lett 264, 101–4 (1999).

    Article  PubMed  CAS  Google Scholar 

  122. Niijima, A., Kannan, H. & Yamashita, H. Neural control of blood glucose homeostasis; effect of microinjection of glucose into hypothalamic nuclei on efferent activity of pancreatic branch of vagus nerve in the rat. Brain Res Bull 20, 811–5 (1988).

    Article  PubMed  CAS  Google Scholar 

  123. Ahren, B. & Taborsky, G. J., Jr. The mechanism of vagal nerve stimulation of glucagon and insulin secretion in the dog. Endocrinology 118, 1551–7 (1986).

    Article  PubMed  CAS  Google Scholar 

  124. Woods, S. C. & Porte, D., Jr. Neural control of the endocrine pancreas. Physiol Rev 54, 596–619 (1974).

    PubMed  CAS  Google Scholar 

  125. Ahren, B., Taborsky, G. J., Jr. & Porte, D., Jr. Neuropeptidergic versus cholinergic and adrenergic regulation of islet hormone secretion. Diabetologia 29, 827–36 (1986).

    Article  PubMed  CAS  Google Scholar 

  126. Bereiter, D. A., Berthoud, H. R., Brunsmann, M. & Jeanrenaud, B. Nucleus ambiguus stimulation increases plasma insulin levels in the rat. Am J Physiol 241, E22–7 (1981).

    PubMed  CAS  Google Scholar 

  127. Strubbe, J. H. & Steffens, A. B. Neural control of insulin secretion. Horm Metab Res 25, 507–12 (1993).

    Article  PubMed  CAS  Google Scholar 

  128. Samols, E. & Weir, G. C. Adrenergic modulation of pancreatic A, B, and D cells alpha-Adrenergic suppression and beta-adrenergic stimulation of somatostatin secretion, alpha-adrenergic stimulation of glucagon secretion in the perfused dog pancreas. J Clin Invest 63, 230–8 (1979).

    Article  PubMed  CAS  Google Scholar 

  129. Scheurink, A. J. et al. Sympathoadrenal influence on glucose, FFA, and insulin levels in exercising rats. Am J Physiol 256, R161–8 (1989).

    PubMed  CAS  Google Scholar 

  130. Van Cauter, E., Desir, D., Decoster, C., Fery, F. & Balasse, E. O. Nocturnal decrease in glucose tolerance during constant glucose infusion. J Clin Endocrinol Metab 69, 604–11 (1989).

    Article  PubMed  Google Scholar 

  131. Shapiro, E. T. et al. Oscillations in insulin secretion during constant glucose infusion in normal man: relationship to changes in plasma glucose. J Clin Endocrinol Metab 67, 307–14 (1988).

    Article  PubMed  CAS  Google Scholar 

  132. Jolin, T. & Montes, A. Daily rhythm of plasma glucose and insulin levels in rats. Horm Res 4, 153–6 (1973).

    Article  PubMed  CAS  Google Scholar 

  133. Peschke, E. & Peschke, D. Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia 41, 1085–92 (1998).

    Article  PubMed  CAS  Google Scholar 

  134. Ahren, B., Veith, R. C. & Taborsky, G. J., Jr. Sympathetic nerve stimulation versus pancreatic norepinephrine infusion in the dog: 1). Effects on basal release of insulin and glucagon. Endocrinology 121, 323–31 (1987).

    Article  PubMed  CAS  Google Scholar 

  135. Palmer, J. P., Porte Jr., D. Neural control of glucagon secretion. IN: Handbook of Experimental Pharmacology. Lefèbre (ed) 1, 115–131 (1983).

    Google Scholar 

  136. Bobbioni, E., Marre, M., Helman, A. & Assan, R. The nervous control of rat glucagon secretion in vivo. Horm Metab Res 15, 133–8 (1983).

    Article  PubMed  CAS  Google Scholar 

  137. Steffens, A. B. & Strubbe, J. H. CNS regulation of glucagon secretion. Adv Metab Disord 10, 221–57 (1983).

    PubMed  CAS  Google Scholar 

  138. Kaneto, A., Miki, E. & Kosaka, K. Effects of vagal stimulation on glucagon and insulin secretion. Endocrinology 95, 1005–10 (1974).

    Article  PubMed  CAS  Google Scholar 

  139. Bloom, S. R. & Edwards, A. V. Pancreatic endocrine responses to stimulation of the peripheral ends of the vagus nerves in conscious calves. J Physiol 315, 31–41 (1981).

    PubMed  CAS  Google Scholar 

  140. Jensen, S. L., Fahrenkrug, J., Holst, J. J., Nielsen, O. V. & Schaffalitzky de Muckadell, O. B. Secretory effects of VIP on isolated perfused porcine pancreas. Am J Physiol 235, E387–91 (1978).

    PubMed  CAS  Google Scholar 

  141. Havel, P. J. et al. Evidence that vasoactive intestinal polypeptide is a parasympathetic neurotransmitter in the endocrine pancreas in dogs. Regul Pept 71, 163–70 (1997).

    Article  PubMed  CAS  Google Scholar 

  142. Taborsky, G. J., Jr., Ahren, B. & Havel, P. J. Autonomic mediation of glucagons secretion during hypoglycemia: implications for impaired alpha-cell responses in type 1 diabetes. Diabetes 47, 995–1005 (1998).

    Article  PubMed  CAS  Google Scholar 

  143. Havel, P. J., Mundinger, T. O., Veith, R. C., Dunning, B. E. & Taborsky, G. J., Jr. Corelease of galanin and NE from pancreatic sympathetic nerves during severe hypoglycemia in dogs. Am J Physiol 263, E8–16 (1992).

    PubMed  CAS  Google Scholar 

  144. Dunning, B. E., Scott, M. F., Neal, D. W. & Cherrington, A. D. Direct quantification of norepinephrine spillover and hormone output from the pancreas of the conscious dog. Am J Physiol 272, E746–55 (1997).

    PubMed  CAS  Google Scholar 

  145. Havel, P. J. & Taborsky, G. J., Jr. The contribution of the autonomic nervous system to changes of glucagon and insulin secretion during hypoglycemic stress. Endocr Rev 10, 332–50 (1989).

    Article  PubMed  CAS  Google Scholar 

  146. Schwartz, T. W. Pancreatic polypeptide: a hormone under vagal control. Gastroenterology 85, 1411–25 (1983).

    PubMed  CAS  Google Scholar 

  147. Kalsbeek, A., Ruiter, M., La Fleur, S. E., Van Heijningen, C. & Buijs, R.M. The diurnal modulation of hormonal responses in the rat varies with different stimuli. J Neuroendocrinol 15, 1144–55 (2003).

    Article  PubMed  CAS  Google Scholar 

  148. Hansen, A. P. & Johansen, K. Diurnal patterns of blood glucose, serum free fatty acids, insulin, glucagon and growth hormone in normals and juvenile diabetics. Diabetologia 6, 27–33 (1970).

    Article  PubMed  CAS  Google Scholar 

  149. Tasaka, Y., Inoue, S., Maruno, K. & Hirata, Y. Twenty-four-hour variations of plasma pancreatic polypeptide, insulin and glucagon in normal human subjects. Endocrinol Jpn 27, 495–8 (1980).

    PubMed  CAS  Google Scholar 

  150. Yamamoto, H., Nagai, K. & Nakagawa, H. Role of SCN in daily rhythms of plasma glucose, FFA, insulin and glucagon. Chronobiol Int 4, 483–91 (1987).

    Article  PubMed  CAS  Google Scholar 

  151. Assan, R., Marre, M., Gormley, M. The amino acid-induced secretion of glucagon. IN: Handbook of Experimental Pharmacology. Lefèbre (ed) 2, 19–29 (1983).

    Google Scholar 

  152. Benthem, L., Mundinger, T. O. & Taborsky, G. J., Jr. Meal-induced insulin secretion in dogs is mediated by both branches of the autonomic nervous system. Am J Physiol Endocrinol Metab 278, E603–10 (2000).

    PubMed  CAS  Google Scholar 

  153. Abdallah, L., Chabert, M. & Louis-Sylvestre, J. Cephalic phase responses to sweet taste. Am J Clin Nutr 65, 737–43 (1997).

    PubMed  CAS  Google Scholar 

  154. Berthoud, H. R., Bereiter, D. A., Trimble, E. R., Siegel, E. G. & Jeanrenaud, B. Cephalic phase, reflex insulin secretion. Neuroanatomical and physiological characterization. Diabetologia 20Suppl, 393–401 (1981).

    Article  PubMed  CAS  Google Scholar 

  155. Berthoud, H. R. & Jeanrenaud, B. Sham feeding-induced cephalic phase insulin release in the rat. Am J Physiol 242, E280–5 (1982).

    PubMed  CAS  Google Scholar 

  156. Shieh, J. J., Pan, C. J., Mansfield, B. C. & Chou, J. Y. A potential new role for muscle in blood glucose homeostasis. J Biol Chem 279, 26215–9 (2004).

    Article  PubMed  CAS  Google Scholar 

  157. Minokoshi, Y., Haque, M. S. & Shimazu, T. Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes 48, 287–91 (1999).

    Article  PubMed  CAS  Google Scholar 

  158. Sudo, M., Minokoshi, Y. & Shimazu, T. Ventromedial hypothalamic stimulation enhances peripheral glucose uptake in anesthetized rats. Am J Physiol 261, E298–303 (1991).

    PubMed  CAS  Google Scholar 

  159. Wood, I. S. & Trayhurn, P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89, 3–9 (2003).

    Article  PubMed  CAS  Google Scholar 

  160. Bryant, N. J., Govers, R. & James, D. E. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3, 267–77 (2002).

    Article  PubMed  CAS  Google Scholar 

  161. Frayn, K. N., Karpe, F., Fielding, B. A., Macdonald, I. A. & Coppack, S. W. Integrative physiology of human adipose tissue. Int J Obes Relat Metab Disord 27, 875–88 (2003).

    Article  PubMed  CAS  Google Scholar 

  162. Randle, P. J., PV, G., Hales, C. & Newsholme, E. A. The glucose fatty acid cycle: its role in insulin sensititvy and the metabolic disturbances of diabetes mellitus. The Lancet 1, 785–789 (1963).

    Article  CAS  Google Scholar 

  163. Mason, T. M. et al. Prolonged elevation of plasma free fatty acids desensitizes the insulin secretory response to glucose in vivo in rats. Diabetes 48, 524–30 (1999).

    Article  PubMed  CAS  Google Scholar 

  164. Fabris, R. et al. Preferential channeling of energy fuels toward fat rather than muscle during high free fatty acid availability in rats. Diabetes 50, 601–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  165. Carlson, M. G., Snead, W. L., Hill, J. O., Nurjhan, N. & Campbell, P. J. Glucose regulation of lipid metabolism in humans. Am J Physiol 261, E815–20. (1991).

    PubMed  CAS  Google Scholar 

  166. Youngstrom, T. G. & Bartness, T. J. White adipose tissue sympathetic nervous system denervation increases fat pad mass and fat cell number. Am J Physiol 275, R1488–93 (1998).

    PubMed  CAS  Google Scholar 

  167. Ahima, R. S. & Flier, J. S. Adipose Tissue as an Endocrine Organ. Trends Endocrinol Metab 11, 327–332 (2000).

    Article  PubMed  CAS  Google Scholar 

  168. Kershaw, E. E. & Flier, J. S. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89, 2548–56 (2004).

    Article  PubMed  CAS  Google Scholar 

  169. Fliers, E. et al. White adipose tissue: getting nervous. J Neuroendocrinol 15, 1005–10 (2003).

    Article  PubMed  CAS  Google Scholar 

  170. Kalsbeek, A. et al. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142, 2677–85 (2001).

    Article  PubMed  CAS  Google Scholar 

  171. Seufert, J. Leptin effects on pancreatic beta-cell gene expression and function. Diabetes 53Suppl 1, S152–8 (2004).

    Article  PubMed  CAS  Google Scholar 

  172. Sandoval, D. A. & Davis, S. N. Leptin: metabolic control and regulation. J Diabetes Complications 17, 108–13 (2003).

    Article  PubMed  Google Scholar 

  173. Petersen, K. F. et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 109, 1345–50 (2002).

    PubMed  CAS  Google Scholar 

  174. Minokoshi, Y. et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–43 (2002).

    Article  PubMed  CAS  Google Scholar 

  175. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7, 941–6 (2001).

    Article  PubMed  CAS  Google Scholar 

  176. Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8, 1288–95 (2002).

    Article  PubMed  CAS  Google Scholar 

  177. Gavrila, A. et al. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab88, 2838–43 (2003).

    Article  PubMed  CAS  Google Scholar 

  178. Cano, N. Bench-to-bedside review: glucose production from the kidney. Crit Care 6, 317–21 (2002).

    Article  PubMed  Google Scholar 

  179. Stumvoll, M., Meyer, C., Mitrakou, A., Nadkarni, V. & Gerich, J. E. Renal glucose production and utilization: new aspects in humans. Diabetologia 40, 749–57 (1997).

    Article  PubMed  CAS  Google Scholar 

  180. Stumvoll, M. et al. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest 96, 2528–33 (1995).

    Article  PubMed  CAS  Google Scholar 

  181. Meyer, C. et al. Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. Am J Physiol Endocrinol Metab 285, E819–26 (2003).

    PubMed  CAS  Google Scholar 

  182. Nagai, K., Suda, M., Yamagishi, O., Toyama, Y. & Nakagawa, H. Studies on the circadian rhythm of phosphoenolpyruvate carboxykinase. III. Circadian rhythm in the kidney. J Biochem (Tokyo) 77, 1249–54 (1975).

    PubMed  CAS  Google Scholar 

  183. Kida, K., Nishio, T., Nagai, K., Matsuda, H. & Nakagawa, H. Gluconeogenesis in the kidney in vivo in fed rats. Circadian change and substrate specificity. J Biochem (Tokyo) 91, 755–60 (1982).

    PubMed  CAS  Google Scholar 

  184. Trumper, B. G., Reschke, K. & Molling, J. Circadian variation of insulin requirement in insulin dependent diabetes mellitus the relationship between circadian change in insulin demand and diurnal patterns of growth hormone, cortisol and glucagon during euglycemia. Horm Metab Res 27, 141–7 (1995).

    Article  PubMed  CAS  Google Scholar 

  185. Clark, R. G., Chambers, G., Lewin, J. & Robinson, I. C. Automated repetitive microsampling of blood: growth hormone profiles in conscious male rats. J. Endocrinol. 111, 27–35 (1986).

    Article  PubMed  CAS  Google Scholar 

  186. Kimura, F. & Tsai, C. W. Ultradian rhythm of growth hormone secretion and sleep in the adult male rat. J Physiol 353, 305–15 (1984).

    PubMed  CAS  Google Scholar 

  187. Pincus, S. M. et al. Females secrete growth hormone with more process irregularity than males in both humans and rats. Am J Physiol 270, E107–15 (1996).

    PubMed  CAS  Google Scholar 

  188. Van Cauter, E. Diurnal and ultradian rhythms in human endocrine function: a minireview. Horm Res 34, 45–53 (1990).

    Article  PubMed  Google Scholar 

  189. De Boer, S. F. & Van der Gugten, J. Daily variations in plasma noradrenaline, adrenaline and corticosterone concentrations in rats. Physiol Behav 40, 323–328 (1987).

    Article  PubMed  Google Scholar 

  190. Dallman, M. F. et al. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Front Neuroendocrinol 14, 303–47 (1993).

    Article  PubMed  CAS  Google Scholar 

  191. Kalsbeek, A., van der Vliet, J. & Buijs, R. M. Decrease of endogenous vasopressin release necessary for expression of the circadian rise in plasma corticosterone: a reverse microdialysis study. J Neuroendocrinol 8, 299–307 (1996).

    Article  PubMed  CAS  Google Scholar 

  192. D’Agostino, J., Vaeth, G. F. & Henning, S. J. Diurnal rhythm of total and free concentrations of serum corticosterone in the rat. Acta Endocrinol (Copenh) 100, 85–90 (1982).

    Google Scholar 

  193. Van Cauter, E. et al. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest 88, 934–42 (1991).

    Article  PubMed  Google Scholar 

  194. Plat, L. et al. Effects of morning cortisol elevation on insulin secretion and glucose regulation in humans. Am J Physiol 270, E36–42 (1996).

    PubMed  CAS  Google Scholar 

  195. Van Cauter, E., Shapiro, E. T., Tillil, H. & Polonsky, K. S. Circadian modulation of glucose and insulin responses to meals: relationship to cortisol rhythm. Am J Physiol 262, E467–75 (1992).

    PubMed  Google Scholar 

  196. Bright, G. M., Melton, T. W., Rogol, A. D. & Clarke, W. L. Failure of cortisol blockade to inhibit early morning increases in basal insulin requirements in fasting insulin-dependent diabetics. Diabetes 29, 662–4 (1980).

    PubMed  CAS  Google Scholar 

  197. Shamoon, H., Hendler, R. & Sherwin, R. S. Altered responsiveness to cortisol, epinephrine, and glucagon in insulin-infused juvenile-onset diabetics. A mechanism for diabetic instability. Diabetes 29, 284–291 (1980).

    Article  PubMed  CAS  Google Scholar 

  198. Prinz, P. N., Halter, J., Benedetti, C. & Raskind, M. Circadian variation of plasma catecholamines in young and old men: relation to rapid eye movement and slow wave sleep. J Clin Endocrinol Metab 49, 300–4 (1979).

    Article  PubMed  CAS  Google Scholar 

  199. Linsell, C. R., Lightman, S. L., Mullen, P. E., Brown, M. J. & Causon, R. C. Circadian rhythms of epinephrine and norepinephrine in man. J Clin Endocrinol Metab 60, 1210–5 (1985).

    Article  PubMed  CAS  Google Scholar 

  200. Peschke, E., Peschke, D., Hammer, T. & Csernus, V. Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused rat pancreatic islets in vitro. J Pineal Res 23, 156–63 (1997).

    Article  PubMed  CAS  Google Scholar 

  201. Shima, T. et al. Melatonin suppresses hyperglycemia caused by intracerebroventricular injection of 2-deoxy-D-glucose in rats. Neurosci Lett 226, 119–22 (1997).

    Article  PubMed  CAS  Google Scholar 

  202. Acuna-Castroviejo, D., Reiter, R. J., Menendez-Pelaez, A., Pablos, M. I. & Burgos, A. Characterization of high-affinity melatonin binding sites in purified cell nuclei of rat liver. J Pineal Res 16, 100–12 (1994).

    Article  PubMed  CAS  Google Scholar 

  203. Picinato, M. C. et al. Melatonin inhibits insulin secretion and decreases PKA levels without interfering with glucose metabolism in rat pancreatic islets. J Pineal Res 33, 156–60 (2002).

    Article  PubMed  CAS  Google Scholar 

  204. Cagnacci, A. et al. Influence of melatonin administration on glucose tolerance and insulin sensitivity of postmenopausal women. Clin Endocrinol (Oxf) 54, 339–46 (2001).

    Article  CAS  Google Scholar 

  205. Lima, F. B. et al. Pinealectomy causes glucose intolerance and decreases adipose cell responsiveness to insulin in rats. Am J Physiol 275, E934–41 (1998).

    PubMed  CAS  Google Scholar 

  206. La Fleur, S. E., Kalsbeek, A., Wortel, J., van der Vliet, J. & Buijs, R. M. Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations. J Neuroendocrinol 13, 1025–32 (2001).

    Article  PubMed  Google Scholar 

  207. Picinato, M. C., Haber, E. P., Carpinelli, A. R. & Cipolla-Neto, J. Daily rhythm of glucose-induced insulin secretion by isolated islets from intact and pinealectomized rat. J Pineal Res 33, 172–7 (2002).

    Article  PubMed  CAS  Google Scholar 

  208. Matschinsky, F. M., Glaser, B. & Magnuson, M. A. Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes 47, 307–15 (1998).

    Article  PubMed  CAS  Google Scholar 

  209. Matschinsky, F. M. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 39, 647–52 (1990).

    Article  PubMed  CAS  Google Scholar 

  210. Newgard, C. B. & McGarry, J. D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem 64, 689–719 (1995).

    Article  PubMed  CAS  Google Scholar 

  211. Thorens, B. GLUT2 in pancreatic and extra-pancreatic gluco-detection (review). Mol Membr Biol 18, 265–73 (2001).

    Article  PubMed  CAS  Google Scholar 

  212. Burcelin, R., Da Costa, A., Drucker, D. & Thorens, B. Glucose competence of the hepatoportal vein sensor requires the presence of an activated glucagon-like peptide-1 receptor. Diabetes 50, 1720–8 (2001).

    Article  PubMed  CAS  Google Scholar 

  213. Peters, A., Schweiger, U., Fruhwald-Schultes, B., Born, J. & Fehm, H. L. The neuroendocrine control of glucose allocation. Exp Clin Endocrinol Diabetes 110, 199–211 (2002).

    Article  PubMed  CAS  Google Scholar 

  214. Pardal, R. & Lopez-Barneo, J. Low glucose-sensing cells in the carotid body. Nat Neurosci 5, 197–8 (2002).

    Article  PubMed  CAS  Google Scholar 

  215. Adachi, A., Kobashi, M. & Funahashi, M. Glucose-responsive neurons in the brainstem. Obes Res 3Suppl 5, 735S–740S (1995).

    PubMed  CAS  Google Scholar 

  216. Wu, X., Gao, J., Yan, J., Owyang, C. & Li, Y. Hypothalamus-brain stem circuitry responsible for vagal efferent signaling to the pancreas evoked by hypoglycemia in rat. J Neurophysiol 91, 1734–47 (2004).

    Article  PubMed  Google Scholar 

  217. Ferreira, M., Jr. et al. Glucose effects on gastric motility and tone evoked from the rat dorsal vagal complex. J Physiol 536, 141–52 (2001).

    Article  PubMed  CAS  Google Scholar 

  218. Oomura, Y., Ooyama, H., Sugimori, M., Nakamura, T. & Yamada, Y. Glucose inhibition of the glucose-sensitive neurone in the rat lateral hypothalamus. Nature 247, 284–6 (1974).

    Article  PubMed  CAS  Google Scholar 

  219. Leloup, C., Orosco, M., Serradas, P., Nicolaidis, S. & Penicaud, L. Specific inhibition of GLUT2 in arcuate nucleus by antisense oligonucleotides suppresses nervous control of insulin secretion. Brain Res Mol Brain Res 57, 275–80 (1998).

    Article  PubMed  CAS  Google Scholar 

  220. Schuit, F. C., Huypens, P., Heimberg, H. & Pipeleers, D. G. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 50, 1–11 (2001).

    Article  PubMed  CAS  Google Scholar 

  221. Leloup, C. et al. Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res 638, 221–6 (1994).

    Article  PubMed  CAS  Google Scholar 

  222. Levin, B. E., Dunn-Meynell, A. A. & Routh, V. H. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am J Physiol 276, R1223–31 (1999).

    PubMed  CAS  Google Scholar 

  223. Routh, V. H. Glucosensing neurons in the ventromedial hypothalamic nucleus (VMN) and hypoglycemia-associated autonomic failure (HAAF). Diabetes Metab Res Rev 19, 348–56 (2003).

    Article  PubMed  CAS  Google Scholar 

  224. Hall, A. C., Hoffmaster, R. M., Stern, E. L., Harrington, M. E. & Bickar, D. Suprachiasmatic nucleus neurons are glucose sensitive. J Biol Rhythms 12, 388–400 (1997).

    PubMed  CAS  Google Scholar 

  225. Evans, S. B. et al. Inactivation of the PVN during hypoglycemia partially simulates hypoglycemia-associated autonomic failure. Am J Physiol Regul Integr Comp Physiol 284, R57–65 (2003).

    PubMed  CAS  Google Scholar 

  226. De Vries, M. G., Lawson, M. A. & Beverly, J. L. Dissociation of hypothalamic noradrenergic activity and sympathoadrenal responses to recurrent hypoglycemia. Am J Physiol Regul Integr Comp Physiol 286, R910–5 (2004).

    Article  PubMed  Google Scholar 

  227. Evans, S. B. et al. Inactivation of the DMH selectively inhibits the ACTH and corticosterone responses to hypoglycemia. Am J Physiol Regul Integr Comp Physiol 286, R123–8 (2004).

    Article  PubMed  CAS  Google Scholar 

  228. Escobar, C., Diaz-Munoz, M., Encinas, F. & Aguilar-Roblero, R. Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. Am J Physiol 274, R1309–16 (1998).

    PubMed  CAS  Google Scholar 

  229. Scheer, F. A., van Heijningen, C. & Buijs, R. Light and biological clock interact in the regulation of body temperature. PhD thesis Chapter 3 (2003).

    Google Scholar 

  230. Neel, J. V. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 14, 353–62 (1962).

    PubMed  CAS  Google Scholar 

  231. Marchant, E. G. & Mistlberger, R. E. Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running. Physiol Behav 60, 657–63 (1996).

    Article  PubMed  CAS  Google Scholar 

  232. Kas, M. J. & Edgar, D. M. Scheduled voluntary wheel running activity modulates free-running circadian body temperature rhythms in Octodon degus. J Biol Rhythms 16, 66–75 (2001).

    Article  PubMed  CAS  Google Scholar 

  233. Kreier, F. et al. Hypothesis: shifting the equilibrium from activity to food leads to autonomic unbalance and the metabolic syndrome. Diabetes 52, 2652–6 (2003).

    Article  PubMed  CAS  Google Scholar 

  234. Qin, L. Q. et al. The effects of nocturnal life on endocrine circadian patterns in healthy adults. Life Sci 73, 2467–75 (2003).

    Article  PubMed  CAS  Google Scholar 

  235. Knutsson, A. Health disorders of shift workers. Occup Med (Lond) 53, 103–8 (2003).

    Article  Google Scholar 

  236. Karlsson, B. H., Knutsson, A. K., Lindahl, B. O. & Alfredsson, L. S. Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. Int Arch Occup Environ Health 76, 424–30 (2003).

    Article  PubMed  Google Scholar 

  237. Kuhn, G. Circadian rhythm, shift work, and emergency medicine. Ann Emerg Med 37, 88–98 (2001).

    Article  PubMed  CAS  Google Scholar 

  238. O’Brien, I. A., Lewin, I. G., O’Hare, J. P., Arendt, J. & Corrall, R. J. Abnormal circadian rhythm of melatonin in diabetic autonomic neuropathy. Clin Endocrinol (Oxf) 24, 359–64 (1986).

    Article  Google Scholar 

  239. Rana, J. S., Mukamal, K. J., Morgan, J. P., Muller, J. E. & Mittleman, M. A. Circadian variation in the onset of myocardial infarction: effect of duration of diabetes. Diabetes 52, 1464–8 (2003).

    Article  PubMed  CAS  Google Scholar 

  240. Ichikawa, M., Kanai, S., Ichimaru, Y., Funakoshi, A. & Miyasaka, K. The diurnal rhythm of energy expenditure differs between obese and glucose-intolerant rats and streptozotocin-induced diabetic rats. J Nutr 130, 2562–7 (2000).

    PubMed  CAS  Google Scholar 

  241. Hotta, K. et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50, 1126–33 (2001).

    Article  PubMed  CAS  Google Scholar 

  242. Kalsbeek, A. & Strubbe, J. H. Circadian control of insulin secretion is independent of the temporal distribution of feeding. Physiol Behav 63, 553–8 (1998).

    Article  PubMed  CAS  Google Scholar 

  243. Cui, L. N., Coderre, E. & Renaud, L. P. Glutamate and GABA mediate suprachiasmatic nucleus inputs to spinal-projecting paraventricular neurons. Am J Physiol Regul Integr Comp Physiol 281, R1283–9 (2001).

    PubMed  CAS  Google Scholar 

  244. Hermes, M. L., Coderre, E. M., Buijs, R. M. & Renaud, L. P. GABA and glutamate mediate rapid neurotransmission from suprachiasmatic nucleus to hypothalamic paraventricular nucleus in rat. J Physiol 496 (Pt 3), 749–57 (1996).

    PubMed  CAS  Google Scholar 

  245. Perreau-Lenz, S. et al. Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms. Eur J Neurosci 17, 221–8 (2003).

    Article  PubMed  Google Scholar 

  246. Kalsbeek, A. et al. Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin [In Process Citation]. Eur J Neurosci 12, 3146–54 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ruiter, M., Buijs, R.M., Kalsbeek, A. (2006). Biological Clock Control of Glucose Metabolism. In: Cardinali, D.P., Pandi-Perumal, S.R. (eds) Neuroendocrine Correlates of Sleep/Wakefulness. Springer, Boston, MA. https://doi.org/10.1007/0-387-23692-9_5

Download citation

Publish with us

Policies and ethics