Skip to main content

The Syntrophy Hypothesis for the Origin of Eukaryotes

  • Chapter
Symbiosis

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 4))

Concluding Remarks

The syntrophy hypothesis proposes an evolutionary pathway for the origin of eukaryotes based primarily on a symbiotic event between methanogenic archaea and facultative fermentative-sulfate reducing δ-protcobacteria (ancestral myxobacteria). The mitochondrial symbiosis is an independent event involving methane-oxidizing α-proteobacteria. An outcome of the model is that information-processing systems are of (eury)archaeotal origin, whereas metabolic, social and developmental functions are of bacterial origin. A major difference with other chimeric models that could also explain those similarities is that, for the first time a selective force for the origin of the eukaryotic nucleus is advanced: metabolic compartmentalisation. That is, the nucleus could have originated not to isolate the genetic material from the cytoplasm, as is generally believed, but to allow the coexistence of two inter-dependent metabolic pathways in the protoeukaryotic cell. The cytoskeleton and other eukaryotic properties are products of symbiotic innovation. The primary symbiosis leading to eukaryotes took place in microbial communities thriving in the widespread anaerobic environments that characterized the Archaean earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bendich, A.J. and Drlica, K. (2000) Bioessays 22, 481–6.

    Article  CAS  PubMed  Google Scholar 

  • Bernander, R. (2000) TrendsMicrobiol 8, 278–283.

    CAS  Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jorgensen, B.B., Witte, U. and Pfannkuche, O. (2000) Nature 407, 623–626.

    Article  CAS  PubMed  Google Scholar 

  • Brocks, J.J. and Logan, G.A. (1999) Science 285, 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J.R. and Doolittle, W.F. (1997) Microbiol. Mol.Biol. Rev. 61, 456–502.

    CAS  PubMed  Google Scholar 

  • Bryant, M.P., Wolin, E.A., Wolin, M.J. and Wolfe, R.S. (1967) Arch Microbiol 59, 20–31.

    CAS  Google Scholar 

  • Chen, H., Keseler, I.M. and Shimkets, L.J. (1990) J Bacteriol 172, 4206–4213.

    CAS  PubMed  Google Scholar 

  • DeLange, R.J., Williams, L.C. and Searcy, D.G. (1981) J Biol Chem 256, 905–11.

    Google Scholar 

  • Doolittle, W.F. (1998) Trends Genet 14, 307–11.

    CAS  PubMed  Google Scholar 

  • Dworkin, M. (1996) Microbiol Rev 60.

    Google Scholar 

  • Faguy, D.M. and Doolittle, W.F. (1998) Curr Biol 8, R338–41.

    Article  CAS  PubMed  Google Scholar 

  • Fenchel, T. and Finlay, B.J. (1995) Ecology and evolution in anoxic worlds, Oxford University Press, Oxford.

    Google Scholar 

  • Gao, Y.G., Su, S.Y., Robinson, H., Padmanabhan, S., Lim, L., McCrary, B.S., Edmondson, S.P., Shriver, J.W and Wang, A.H.(1998) Nat Struct Biol 5, 782–6.

    Article  CAS  PubMed  Google Scholar 

  • Germot, A., Philippe, H. and Le Guyader, H. (1996) Proc. Natl. Acad. Sci. USA 93, 14614–7.

    Article  CAS  PubMed  Google Scholar 

  • Gogarten, J.P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E.J., Bowman, B.J., Manolson, M.F., Poole, R.J., Date, T., Oshima, T., Konishi, J., Denda, K. and Yoshida, M. (1989) Proc. Natl. Acad. Sci. USA 86, 6661–5.

    CAS  PubMed  Google Scholar 

  • Gray, M.W., Burger, G. and Lang, B.F. (1999) Science 283, 1476–1481.

    Article  CAS  PubMed  Google Scholar 

  • Grayling, R.A., Sandman, K. and Reeve, J.N. (1994) System Appl Microbiol 16, 582–590.

    CAS  Google Scholar 

  • Grayling, R.A., Sandman, K. and Reeve, J.N. (1996) FEMS Microbiol Rev 18, 203–13.

    CAS  PubMed  Google Scholar 

  • Gupta, R.S. and Golding, G.B. (1996) Trends Biochem Sci 21, 166–71.

    CAS  PubMed  Google Scholar 

  • Haeckel, E. (1866) Generelle Morphologie der Organismen: Allgemeine Grundzügeder organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie, Georg Reimer, Berlin.

    Google Scholar 

  • Hanson, R.S. and Hanson, T.E. (1996) Microbiol Rev 60, 439–471.

    CAS  PubMed  Google Scholar 

  • Horner, D.S., Hirt, R.P. and Embley, T.M. (1999) Mol Biol Evol 16, 1280–91.

    CAS  PubMed  Google Scholar 

  • Horner, D.S., Hirt, R.P., Kilvington, S., Lloyd, D. and Embley, T.M. (1996) Proc R Soc Lond B Biol Sci 263, 1053–9.

    CAS  Google Scholar 

  • Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. and Miyata, T. (1989) Proc. Natl. Acad. Sci. USA 86, 9355–9.

    CAS  PubMed  Google Scholar 

  • Kates, M. (1993) In M. Kates, D. J. Kushner and A. T. Matheson (eds.), Membrane lipids of archaea. Elsevier Science, Amsterdam, pp. 261.

    Google Scholar 

  • Kawarabayasi, Y., Hino, Y., Horikawa, H., Yamazaki, S., Haikawa, Y., Jin-no, K., Takaliashi, M., Sekine, M., Baba, S., Ankai, A., Kosugi, H., Hosoyama, A., Fukui, S., Nagai, Y., Nishijima, K., Nakazawa, H., Takamiya, M., Masuda, S., Funahashi, T., Tanaka, T., Kudoh, Y., Yamazaki, J., Kushida, N., Oguchi, A., Aoki, K., Kubota, K., Nakamura, Y., Nomura, N., Sako, Y. and Kikuchi, H. (1999) DNA Res 6, 83–101, 145–52.

    CAS  PubMed  Google Scholar 

  • Kirschner, M. and Gerhart, J. (1998) Proc Natl Acad Sci U S A 95, 8420–7.

    Article  CAS  PubMed  Google Scholar 

  • Knoll, A.H. (1990) In D. E. G. Briggsand P.R. Crowther (eds.), Precambrian evolution of prokaryotes and protists. Blackwell Scientific Publications, Oxford, pp. 9–16.

    Google Scholar 

  • Knoll, A.H.(1999) Science 285, 1025–6.

    Article  CAS  PubMed  Google Scholar 

  • Koga, Y., Nishihara, M., Morii, H. and Akagawa-Matsushita, M. (1993) Microbiol Rev 57, 164–182.

    CAS  PubMed  Google Scholar 

  • Laine, B., Culard, F., Maurizot, J.C. and Sautiere, P. (1991) Nucleic Acids Res 19, 3041–5.

    CAS  PubMed  Google Scholar 

  • Larkin, J.M. and Henk, M.C. (1996) Microsc Res Tech 33, 23–31.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcia, P. (1999) J Mol Evol 49, 439–452.

    CAS  PubMed  Google Scholar 

  • Lopez-Garcia, P. and Moreira, D. (1999) Trends Biochem Sci 24, 88–93.

    CAS  PubMed  Google Scholar 

  • Margulis, L. (1996) Proc Natl Acad SciU S A 93, 1071–6.

    CAS  Google Scholar 

  • Margulis, L., Dolan, M.F. and Guerrero, R. (2000) Proc Natl Acad Sci U S A 97, 6954–9.

    Article  CAS  PubMed  Google Scholar 

  • Margulis, L. and Fester, R. (1993) Symbiosis as a source of evolutionary innovation., MIT Press, Cambridge. MA.

    Google Scholar 

  • Martin, W. and Muller, M. (1998) Nature 392, 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Moreira, D. and Lopez-Garcia, P. (1998) J. Mol. Evol. 47, 517–530.

    Article  CAS  PubMed  Google Scholar 

  • Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Baliga, N.S., Thorsson, V., Sbrogna, J., Swartzell, S., Weir, D., Hall, J., Dahl, T.A., Welti, R., Goo, Y.A., Leithauser, B., Keller, K., Cruz, R., Danson, M.J., Hough, D.W., Maddocks, D.G., Jablonski, P.E., Krebs, M.P., Angevine, C.M. and Dale, H. (2000) Proc Natl Acad Sci U S A 97, 12176–12181.

    CAS  PubMed  Google Scholar 

  • Nishihara, M., Utagawa, M., Akutsu, H. and Koga, Y. (1992) J Biol Chem 267, 12432–12435.

    CAS  PubMed  Google Scholar 

  • Omer, A.D., Lowe, T.M., Russell, A.G., Ebhardt, H., Eddy, S.R. and Dennis, P.P. (2000) Science 288, 517–522.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, S.L. and Reeve, J.N. (1998) Extremophiles 2, 141–8.

    CAS  PubMed  Google Scholar 

  • Reanney, D.C. (1974) Theor Biol 48, 243–251.

    CAS  Google Scholar 

  • Reichenbach, H. and Dworkin, M. (1992) In A. Balows, H. G. Trüper, M. Dworkin, W. Harder and K. H. Schleifer (eds.), The myxobacteria. Springer-Verlag, Mew York, pp. 3416.

    Google Scholar 

  • Ren, T., Roy, R. and Knowles, R. (2000) Appl Environ Microbiol 66, 3891–3897.

    CAS  PubMed  Google Scholar 

  • Ribeiro, S. and Golding, G.B. (1998) Mol Biol Evol 15, 779–88.

    CAS  PubMed  Google Scholar 

  • Rivera, M.C., Jain, R., Moore, J.E. and Lake, J.A. (1998) Proc. Natl. Acad. Sci. USA 95, 6239–44.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, H., Gao, Y.G., McCrary, B.S., Edmondson. S.P., Shriver, J.W. and Wang, A.H. (1998) Nature 392, 202–5.

    CAS  PubMed  Google Scholar 

  • Roger, A.J., Smith, M.W., Doolittle, R.F. and Doolittle, W.F. (1996) J Eukaryot Microbiol 43, 475–85.

    CAS  PubMed  Google Scholar 

  • Roger, A.J., Svard, S.G., Tovar, J., Clark, C.G., Smith, M.W., Gillin, F.D. and Sogin, M.L. (1998) Proc. Natl. Acad. Sci. USA 95, 229–34.

    Article  CAS  PubMed  Google Scholar 

  • Ruepp, A., Graml, W., Santos-Martinez, M.L., Koretke, K. K., Volker, C., Mewes, H.W., Frishman, D., Stocker, S., Lupas, A.N. and Baumeister, W. (2000) Nature 407, 508–513.

    CAS  PubMed  Google Scholar 

  • Schopf, J.W. (2000) Proc Natl Acad Sci U S A 97, 6947–53.

    Article  CAS  PubMed  Google Scholar 

  • Searcy, D.G. (1992) In H. Hartman and K. Matsuno (eds.), Origins of mitochondria and chloroplasts from sulfur-based symbioses. World Scientific, Singapore, pp. 47–78.

    Google Scholar 

  • Searcy, D.G., Stein, D.B. and Green, G.R. (1978) Biosystems 10, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J.M. and Szathmary, E. (1995) The major transitions in evolution, Freeman, Oxford.

    Google Scholar 

  • Watanabe, Y. and Gray, M.W. (2000) Nucleic Acids Res 28, 2342–52.

    Article  CAS  PubMed  Google Scholar 

  • Woese, C.R. (1987) Microbiol Rev 51, 221–71.

    CAS  PubMed  Google Scholar 

  • Woese. C.R. (2000) Proc Natl Acad Sci U S A 97, 8392–6

    Article  CAS  PubMed  Google Scholar 

  • Wolf, H.J., Christiansen, M. and Hanson, R.S. (1980) J Bacteriol 141, 1340-13-49.

    Google Scholar 

  • Wolf, H.J. and Hanson, R.S. (1979) J Gen Microbiol 114, 187–194.

    Google Scholar 

  • Yamaghisi, A., Kon, T., Takahashi, G. and Oshima, T. (1996) Cytoplasmic membrane of Thermoplasma may be related to endoplasmic reticulum of eukaryotic cells, Athens, GA.

    Google Scholar 

  • Zuckerkandl, E. and Pauling, L. (1965) J Theor Biol 8, 357–66.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

LóPez-García, P., Moreira, D. (2001). The Syntrophy Hypothesis for the Origin of Eukaryotes. In: Seckbach, J. (eds) Symbiosis. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/0-306-48173-1_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48173-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0189-5

  • Online ISBN: 978-0-306-48173-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics