Skip to main content

Regulation of Hydrogenase Gene Expression

  • Chapter
Anoxygenic Photosynthetic Bacteria

Summary

In bacteria, the genes for hydrogenase (hup and hyp) are generally clustered, and the sequence ofthese clustered genes has been determined in several species. Among the photosynthetic bacteria, the organization of the hup and hyp genes has been the most studied in Rhodobacter capsulatus, and the nucleotide sequence of the entire hup/hyp gene cluster has been determined. This cluster includes the structural genes for the H2-uptake [NiFe]hydrogenase (hupSLC) and the large number of accessory and regulatory genes. The possible roles of these genes, and the existence of other types of hydrogenase in the photosynthetic bacteria, are discussed. Hydrogenase gene expression in Rb. capsulatus is controlled by two main factors, namely molecular hydrogen and oxygen. Several regulatory genes have been identified in the hup/hyp gene cluster of Rb. capsulatus. The products of two of them, hupR and hupT, belong to the superfamily of two-component regulatory systems. In

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahombo G, Willison JC and Vignais PM (1986) The nifHDK genes are contiguous with a nifA-like regulatory gene in Rhodobacter capsulatus. Mol Gen Genet 205: 442–445

    Article  CAS  Google Scholar 

  • Albracht SPJ, Kalkman ML and Slater EC (1983) Magnetic interaction of nickel(III) and the iron-sulphur cluster in hydrogenase from Chromatium vinosum. Biochim Biophys Acta 724: 309–316

    CAS  Google Scholar 

  • Albright LM, Huala E and Ausubel M (1989) Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu Rev Genet 23: 311–336

    Article  CAS  PubMed  Google Scholar 

  • Alias A, Cejudo FJ, Chabert J, Willison JC and Vignais PM (1989) Nucleotide sequence of wild-type and mutant nifR4(ntrA) genes of Rhodobacter capsulatus: Identification of an essential glycine residue. Nucleic Acids Res 17: 5377

    CAS  PubMed  Google Scholar 

  • Bagyinka C, Whitehead JP, Maroney MJ (1993) An X-ray absorption spectroscopic study of nickel redox chemistry in hydrogenase. J Am Chem Soc 115: 3576–3585

    Article  CAS  Google Scholar 

  • Black KL, Fu C and Maier RJ (1994) Sequences and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression. J Bacteriol 176: 7102–7106

    CAS  PubMed  Google Scholar 

  • Bonam D, Lehman L, Roberts GP and Ludden PW (1989) Regulation of carbon monoxide dehydrogenase and hydro-genase in Rhodospirillum rubrum: Effects of CO and oxygen on synthesis and activity. J Bacteriol 171: 3102–3107

    CAS  PubMed  Google Scholar 

  • Bourret RB, Borkovich KA and Simon MI (1991) Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Biochem 60: 401–441

    Article  CAS  PubMed  Google Scholar 

  • Brewin NJ, DeJong TM, Phillips DA and Johnston AWB (1980) Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum. Nature (London)288: 77–79

    Article  CAS  Google Scholar 

  • Bulen WA, Burns RC and Le Comte JR (1965a) Nitrogen fixation: Hydrosulfite as electron donor with cell free preparations of Azotobacter vinelandii and Rhodospirillum rubrum. Proc Natl Acad Sci USA 53: 532–539

    CAS  PubMed  Google Scholar 

  • Bulen WA, Burns RC and Le Comte JR (1965b) Nitrogen fixation studies with aerobic and photosynthetic bacteria. In: San Pietro A (ed) Non-heme Iron Proteins: Role in Energy Conservation, pp 261–287. Antioch Press, Yellow Springs, Ohio

    Google Scholar 

  • Cauvin B, Colbeau A and Vignais PM (1991) The hydrogenase structural operon in Rhodobacter capsulatus contains a third gene, hupM, necessary for the formation of a physiologically competent hydrogenase. Mol Microbiol 5: 2519–2527

    CAS  PubMed  Google Scholar 

  • Chen JC and Mortenson LE (1992a) Two open reading frames (ORFs) identified near the hydrogenase structural genes in Azotobacter vinelandii, the first ORF may encode for a polypeptide similar to rubredoxins. Biochim Biophys Acta 1131: 122–124

    CAS  PubMed  Google Scholar 

  • Chen JC and Mortenson LE (1992b) Identification of six open reading frames from a region of the Azotobacter vinelandii genome likely involved in dihydrogen metabolism. Biochim Biophys Acta 1131: 199–202

    CAS  PubMed  Google Scholar 

  • Colbeau A and Vignais PM (1983) The membrane-bound hydrogenase of Rhodopseudomonas capsulata is inducible and contains nickel. Biochim Biophys Acta 748: 128–138

    CAS  Google Scholar 

  • Colbeau A and Vignais PM (1992) Use of hupS::lacZ gene fusion to study regulation of hydrogenase expression in Rhodobacter capsulatus: Stimulation by H2. J Bacteriol 174: 4258–4264

    CAS  PubMed  Google Scholar 

  • Colbeau A, Kelley BC and Vignais PM (1980) Hydrogenase activity in Rhodopseudomonas capsulata: Relationship with nitrogenase activity. J Bacteriol 144: 141–148

    CAS  PubMed  Google Scholar 

  • Colbeau A, Chabert J and Vignais PM (1983) Purification, molecular properties and localization in the membrane of the hydrogenase of Rhodopseudomonas capsulata. Biochim Biophys Acta 748: 116–127

    CAS  Google Scholar 

  • Colbeau A, Godfroy A and Vignais PM (1986) Cloning of DNA fragments carrying hydrogenase genes of Rhodopseudomonas capsulata. Biochimie 68: 147–155

    CAS  PubMed  Google Scholar 

  • Colbeau A, Magnin JP, Cauvin B, Champion T and Vignais PM (1990) Genetic and physical mapping of an hydrogenase gene cluster from Rhodobacter capsulatus. Mol Gen Genet 220: 393–399

    Article  CAS  Google Scholar 

  • Colbeau A, Richaud P, Toussaint B, Caballero FJ, Elster C, Delphin C, Smith RL, Chabert J and Vignais PM (1993). Organization of the genes necessary for hydrogenase expression in Rhodobacter capsulatus. Sequence analysis and identification of two hyp regulatory mutants. Mol Microbiol 8: 15–29

    CAS  PubMed  Google Scholar 

  • Colbeau A, Kovacs KL, Chabert J and Vignais PM (1994) Cloning and nucleotide sequences of the structural (hupSLC) and accessory (hupDHI) genes for hydrogenase biosynthesis in Thiocapsa roseopersicina. Gene 140: 25–31

    Article  CAS  PubMed  Google Scholar 

  • Dernedde J, Eitinger M and Friedrich B (1993) Analysis of a pleiotropic gene region involved in formation of catalytically active hydrogenases in Alcaligenes eutrophus H16. Arch Microbiol 159: 545–553

    Article  CAS  PubMed  Google Scholar 

  • Donohue TJ and Kaplan S (1991) Genetic techniques in Rhodospirillaceae. Methods Enzymol 204: 459–485

    CAS  PubMed  Google Scholar 

  • Dross F, Geisler V, Lenger R, Theis F, Krafft T, Fahrenholz F, Kojro E, Duchêne A, Tripier D, Juvenal K and Kröger A (1992) The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. Eur J Biochem 206: 93–102

    Article  CAS  PubMed  Google Scholar 

  • Du L, Stejskal F and Tibelius KH (1992) Characterization of two genes (hupD and hupE) required for hydrogenase activity in Azotobacter chroococcum. FEMS Microbiol Lett 96: 93–102

    Article  CAS  Google Scholar 

  • Du L, Tibelius KH, Souza EM, Garg RP and Yates MG (1994) Sequences, organization and analysis of the hupZMNOQRTV genes from the Azotobacter chroococcum hydrogenase gene cluster. J Mol Biol 243: 549–557

    Article  CAS  PubMed  Google Scholar 

  • Eberz G and Friedrich B (1991) Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus. J Bacteriol 173: 1845–1854

    CAS  PubMed  Google Scholar 

  • Eberz G, Hogrefe C, Kortlücke C, Kamienski A and Friedrich B (1986) Molecular cloning of structural and regulatory hydrogenase (hox) genes of Alcaligenes eutrophus H16. J Bacteriol 168: 636–641

    CAS  PubMed  Google Scholar 

  • Elsen S, Richaud P, Colbeau A and Vignais PM (1993) Sequence analysis and interposon mutagenesis of the hupT gene, which encodes a sensor protein involved in repression of hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 175: 7404–7412

    CAS  PubMed  Google Scholar 

  • Fonstein M and Haselkorn R (1993) Chromosomal structure of Rhodobacter capsulatus strain SB1003: Cosmid encyclopedia and high-resolution physical and genetic map. Proc Natl Acad Sci USA 90: 2522–2526

    CAS  PubMed  Google Scholar 

  • Ford CM, Garg N, Garg RP, Tibelius KH, Yates MG, Arp DJ and Seefeldt LC (1990) The identification, characterization, sequencing and mutagenesis of the genes (hupSL) encoding the small and large subunits of the H2-uptake hydrogenase of Azotobacter chroococcum. Mol Microbiol 4: 999–1008

    CAS  PubMed  Google Scholar 

  • Fu C and Maier RJ (1994a) Nucleotide sequences of two hydrogenase-related genes (hypA and hypB) from Bradyrhizobium japonicum, one of which (hypB) encodes an extremely histidine-rich region and guanine nucleotide-binding domains. Biochim Biophys Acta 1184: 135–138

    CAS  PubMed  Google Scholar 

  • Fu C and Maier RJ (1994b) Sequence and characterization of three genes within the hydrogenase cluster of Bradyrhizobium japonicum. Gene 141: 47–52

    CAS  PubMed  Google Scholar 

  • Fu C and Maier RJ (1994c) Organisation of the hydrogenase gene cluster from Bradyrhizobium japonicum: Sequences and analysis of five more hydrogenase-related genes. Gene, in press

    Google Scholar 

  • Garg RP, Menon AL, Jacobs K, Robson RM and Robson RL (1994) The hypE gene completes the gene cluster for H2-oxidation in Azotobacter vinelandii. J Mol Biol 236: 390–396

    Article  CAS  PubMed  Google Scholar 

  • Gest H (1952) Properties of cell-free hydrogenases of Escherichia coli and Rhodospirillum rubrum. J Bacteriol 63: 111–121

    CAS  PubMed  Google Scholar 

  • Gest H (1954) Oxidation and evolution of molecular hydrogen by microorganisms. Bacteriol Rev 18: 43–73

    CAS  PubMed  Google Scholar 

  • Gest H (1972) Energy conservation and generation of reducing power in bacterial photosynthesis. Adv. Microbial Physiol. 7: 243–282

    CAS  Google Scholar 

  • Gest H and Kamen MD (1949a) Studies on the metabolism of photosynthetic bacteria. IV Photochemical production of molecular hydrogen by growing cultures of photosynthetic bacteria. J Bacteriol 58: 239–245

    CAS  Google Scholar 

  • Gest H and Kamen MD (1949b) Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109: 558–559

    CAS  Google Scholar 

  • Gest H, Kamen MD and Bregoff HM (1950) Studies on the metabolism of photosynthetic bacteria. V Photoproduction of hydrogen and nitrogen fixation by Rhodospirillum rubrum. J Biol Chem 182: 153–170

    CAS  Google Scholar 

  • Gogotov IN (1986) Hydrogenases of phototrophic microorganisms. Biochimie 68: 181–187

    CAS  PubMed  Google Scholar 

  • Gogotov IN, Zorin NA and Bogorov LV (1974) Hydrogen metabolism and ability for nitrogen fixation in Thiocapsa roseopersicina. Mikrobiologiya 43: 5–11

    CAS  Google Scholar 

  • Gorrell TE and Uffen RL (1977) Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness. J Bacteriol 131: 533–543

    CAS  PubMed  Google Scholar 

  • Gorrell TE and Uffen RL (1978) Light-dependent and light-independent production of hydrogen gas by photosynthesizing Rhodospirillum rubrum mutant C Photochem Photobiol 27: 351–358

    CAS  Google Scholar 

  • Hidalgo E, Leyva A and Ruiz-Argüeso T (1990) Nucleotide sequence ofthe hydrogenase structural genes from Rhizobium leguminosarum. Plant Mol Biol 15: 367–370

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo E, Palacios JM, Murillo J and Ruiz-Argüeso T (1992) Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae. J Bacteriol 174: 4130–4139

    CAS  PubMed  Google Scholar 

  • Hillmer P and Gest H (1977a) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129: 724–731

    CAS  PubMed  Google Scholar 

  • Hillmer P and Gest H (1977b) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata. Production and utilization of H2 by resting cells. J Bacteriol 129: 732–739

    CAS  PubMed  Google Scholar 

  • Hübner P, Willison JC, Vignais PM and Bickle TA (1991) Expression of regulatory nif genes in Rhodobacter capsulatus. J Bacteriol 173: 2993–2999

    PubMed  Google Scholar 

  • Iuchi S, Matsuda Z, Fujiwara T and Lin ECC (1990) The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Mol Microbiol 4: 715–727

    CAS  PubMed  Google Scholar 

  • Jacobi A, Rossmann R and Böck A (1992) The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol 158: 444–451

    Article  CAS  PubMed  Google Scholar 

  • Jones R and Haselkorn R (1989) The DNA sequence of the Rhodobacter capsulatus ntrA, ntrB and ntrC gene analogues required for nitrogen fixation. Mol Gen Genet 215: 507–516

    Article  CAS  PubMed  Google Scholar 

  • Jouanneau Y, Kelley BC, Berlier Y, Lespinat PA and Vignais PM (1980) Continuous monitoring, by mass spectrometry of H2 production and recycling in Rhodopseudomonas capsulata. J Bacteriol 143: 628–636

    CAS  PubMed  Google Scholar 

  • Jouanneau Y, Lebecque S and Vignais PM (1984) Ammonia and light effect on nitrogenase activity in nitrogen-limited continuous cultures of Rhodopseudomonas capsulata. Role of glutamine synthetase. Arch Microbiol 139: 326–331

    Article  CAS  Google Scholar 

  • Jouanneau Y, Wong B and Vignais PM (1985) Stimulation by light of nitrogenase synthesis in cells of Rhodopseudomonas capsulata growing in N-limited continuous culture. Biochim Biophys Acta 808: 149–155.

    CAS  Google Scholar 

  • Kern M, Klipp W and Klemme JH (1994) Increased nitrogenase-dependent H2 photoproduction by hup mutants of Rhodospirillum rubrum. Appl Environ Microbiol 60: 1768–1774

    CAS  PubMed  Google Scholar 

  • Klemme JH (1968) Untersuchungen zur Photoautotrophie mit molekularem Wasserstoff bei neuisolierten schwefelfreien Purpurbakterien Archiv Microbiol 64: 29–42

    CAS  Google Scholar 

  • Klipp W, Masepohl B and Pühler A (1988) Identification and mapping of nitrogen fixation genes of Rhodobacter capsulatus: Duplication of a nifA-nifB region. J Bacteriol 170: 693–699

    CAS  PubMed  Google Scholar 

  • Kortlüke CH, Horstmann K, Schwartz E, Rohde M, Binsack R, Friedrich B (1992) A gene complex coding for the membrane-bound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 174: 6277–6289

    PubMed  Google Scholar 

  • Kranz RG and Haselkorn R (1986) Anaerobic regulation of nitrogen-fixation genes in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 83: 6805–6809

    CAS  PubMed  Google Scholar 

  • Kullik I, Fritsche S, Knobel H, Sanjuan J, Hennecke H and Fischer HM (1991) Bradyrhizobium japonicum has two differentially regulated, functional homologs of the σ54 gene (rpoN). J Bacteriol 173: 1125–1138

    CAS  PubMed  Google Scholar 

  • Leclerc M, Colbeau A, Cauvin B and Vignais PM (1988) Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (hup) of Rhodobacter capsulatus. Mol Gen Genet 214: 97–107. Erratum Mol Gen Genet (1989) 215: 368

    Article  CAS  PubMed  Google Scholar 

  • Lenz O, Schwartz E, Dernedde J, Eitinger M and Friedrich B (1994) The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 176: 4385–4393

    CAS  PubMed  Google Scholar 

  • Lindstrom ES, Burris RH and Wilson PW (1949) Nitrogen fixation by photosynthetic bacteria. J Bacteriol 58: 313–316

    CAS  Google Scholar 

  • Lindstrom ES, Lewis SM and Pinsky MJ (1951) Nitrogen fixation and hydrogenase in various bacterial species. J Bacteriol 61: 481–487

    CAS  PubMed  Google Scholar 

  • Lutz S, Jacobi A, Schlensog V, Böhm R, Sawers G and Böck A (1991) Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol Microbiol 5: 123–135

    CAS  PubMed  Google Scholar 

  • Madigan MT and Gest H (1979) Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 137: 524–530

    CAS  PubMed  Google Scholar 

  • Madigan M, Cox SS and Stegeman RA (1984) Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157: 73–78

    CAS  PubMed  Google Scholar 

  • Maier T, Jacobi A, Sauter M and Böck A (1993) The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-bindingprotein. J Bacteriol 175: 630–635

    CAS  PubMed  Google Scholar 

  • Marrs B (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 71: 971–973

    CAS  PubMed  Google Scholar 

  • Masepohl B, Klipp W and Pühler A (1988) Genetic characterization and sequence analysis of the duplicated nifA/nifB gene region of Rhodobacter capsulatus. Mol Gen Genet 212: 27–37

    Article  CAS  PubMed  Google Scholar 

  • Menon AL, Mortenson LE and Robson RL (1992) Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. J Bacteriol 174: 4549–4557

    CAS  PubMed  Google Scholar 

  • Menon AL, Stults LW, Robson RL and Mortenson LE (1990a) Cloning, sequencing and characterization of the [NiFe] hydrogenase-encoding structural genes (hoxK and hoxG) from Azotobacter vinelandii. Gene 96: 67–74

    Article  CAS  PubMed  Google Scholar 

  • Menon NK, Robbins J, Peck Jr HD, Chatelus CY, Choi ES and Przybyla AE (1990b) Cloning and sequencing of putative Escherichia coli [NiFe]hydrogenase-l operon containing six open reading frames. J Bacteriol 172: 1969–1977

    CAS  PubMed  Google Scholar 

  • Menon NK, Robbins J, Wendt JC, Shanmugan KT and Przybyla AE (1991) Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe]hydrogenase l. J Bacteriol 173: 4851–4861.

    CAS  PubMed  Google Scholar 

  • Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugan KT, Peck HD Jr and Przybyla AE (1994) Cloning, sequencing and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176: 4416–4423

    CAS  PubMed  Google Scholar 

  • Meyer J, Kelley BC and Vignais PM (1978) Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria. Biochimie 60: 245–260

    CAS  PubMed  Google Scholar 

  • Meijer WG and Tabita FR (1992) Isolation and characterization of the nifUSVW-rpoN gene cluster from Rhodobacter sphaeroides. J Bacteriol 174: 3855–3866

    CAS  PubMed  Google Scholar 

  • Monson EK, Weinstein M, Ditta GS and Helinski DR (1992) The FixL protein of Rhizobium meliloti can be separated into a hem-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc Natl Acad Sci USA 89: 4280–4284

    CAS  PubMed  Google Scholar 

  • Ormerod JG, Ormerod KS and Gest H (1961) Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria: Relationships with nitrogen metabolism. Arch Biochem Biophys 94: 449–463

    Article  CAS  PubMed  Google Scholar 

  • Parkinson JS (1993) Signal transduction schemes of bacteria. Cell 73: 857–871

    Article  CAS  PubMed  Google Scholar 

  • Parkinson JS and Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26: 71–112

    Article  CAS  PubMed  Google Scholar 

  • Paschinger H (1974) A changed nitrogenase activity in Rhodospirillum rubrum after substitution of tungsten for molybdenum. Arch Microbiol 101: 379–389

    Article  CAS  Google Scholar 

  • Rabin RS, Collins LA and Stewart V (1992) In vivo requirement of integration host factor for nar (nitrate reductase) operon expression in Escherichia coli K-12. Proc Natl Acad Sci USA 89: 8701–8705

    CAS  PubMed  Google Scholar 

  • Ramani N, Huang L and Freundlich M (1992) In vitro interactions of integration host factor with the ompF promoter regulatory region of Escherichia coli. Mol Gen Genet 231: 248–255

    CAS  PubMed  Google Scholar 

  • Rey L, Hidalgo E, Palacios J and Ruiz-Argüeso T (1992) Nucleotide sequence and organization of an H2-uptake gene cluster from Rhizobium leguminosarum bv. viciae containing a rubredoxin-like gene and four additional open reading frames. J Mol Biol 228: 998–1002

    Article  CAS  PubMed  Google Scholar 

  • Rey L, Murillo J, Hernando Y, Hidalgo E, Cabrera E, Imperial J and Ruiz-Argüeso T (1993) Molecular analysis of a microaerobically induced operon required for hydrogenase synthesis in Rhizobium leguminosarum bv. viciae. Mol Microbiol 8: 471–481

    CAS  PubMed  Google Scholar 

  • Richaud P, Vignais PM, Colbeau A, Uffen RL and Cauvin B (1990) Molecular biology studies of the uptake hydrogenase of Rhodobacter capsulatus and Rhodocyclus gelatinosus. FEMS Microbiology Rev 87: 413–418

    CAS  Google Scholar 

  • Richaud P, Colbeau A, Toussaint B and Vignais PM (1991) Identification and sequence analysis of hupR1 gene which encodes a response regulator of the NtrC family required for hydrogenase expression in Rhodobacter capsulatus. J Bacteriol 173: 5928–5932

    CAS  PubMed  Google Scholar 

  • Rossman R, Maier T, Lottspeick F and Böck A (1995) Characterization of a protease from Escherichia coli involved in hydrogenase maturation. Eur J Biochem 227: 545–550

    Google Scholar 

  • Sasikala K, Ramana ChV, Rao PR and Kovacs KL (1993) Anoxygenic phototrophic bacteria: Physiology and advances in hydrogen production technology. Adv Appl Microbiol 38: 211–295

    CAS  Google Scholar 

  • Sauter M, Böhm R and Böck A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6: 1523–1532

    CAS  PubMed  Google Scholar 

  • Sayavedra-Soto LA, Powell GK, Evans HJ and Morris RO (1988) Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase. Proc Natl Acad Sci USA 85: 8395–8399

    CAS  PubMed  Google Scholar 

  • Scolnik PA and Marrs BL (1987) Genetic research with photosynthetic bacteria. Annu Rev Microbiol 41: 703–726

    Article  CAS  PubMed  Google Scholar 

  • Seifert E and Pfennig N (1979) Chemoautotrophic growth of Rhodopseudomonas species with hydrogen and chemotrophic utilization of methanol and formate. Archiv Microbiol 122: 177–182

    Google Scholar 

  • Stock JB, Ninfa AJ and Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53: 450–490

    CAS  PubMed  Google Scholar 

  • Stock JB, Lukat GS and Stock AM (1991) Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu Rev Biophys Chem 20: 109–136

    Article  CAS  Google Scholar 

  • Stoker K, Reijnders WNM, Oltmann LF and Stouthamer AH (1989) Initial cloning and sequencing of hydHG, an operon homologous to ntrBC and regulating the labile hydrogenase activity in Escherichia coli K-12. J Bacteriol 171: 4448–4456

    CAS  PubMed  Google Scholar 

  • Takakuwa S and Wall JD (1981) Enhancement of hydrogenase activity in Rhodopseudomonas capsulata by nickel. FEMS Microbiol Lett 12: 359–363

    Article  CAS  Google Scholar 

  • Tanaka I, Appelt K, Dijk J, White SW and Wilson KS (1984) 3-Å resolution structure of a protein with histone-like properties in prokaryotes. Nature 310: 376–381

    Article  CAS  PubMed  Google Scholar 

  • Taylor DP, Cohen SN, Clark WG and Marrs BL (1983) Alignment of the genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J Bacteriol 154: 580–590

    CAS  PubMed  Google Scholar 

  • Thöny B and Hennecke H (1989) The −24/−12 promoters come of age. FEMS Microbiol Rev 63: 341–358

    Google Scholar 

  • Tibelius KH, Du L, Tito D and Stejskal F (1993) Azotobacter chroococcum hydrogenase gene cluster: Nucleotide sequences and genetic analysis of four accessory genes (hupA, hupB, hupY and hupC). Gene 127: 53–61

    Article  CAS  PubMed  Google Scholar 

  • Tomiyama M, Shiotani M, Sode K, Tamiya E and Karube I (1991) Nucleotide sequence analysis and expression control of hydA in Escherichia coli. Abstracts of 3rd Intl Conference on Molecular Biology of Hydrogenases, Troia, Portugal, pp 24–25

    Google Scholar 

  • Toussaint B, Bosc C, Richaud P, Colbeau A and Vignais PM (1991) A mutation in a Rhodobacter capsulatus gene encoding an integration host factor-like protein impairs in vivo hydrogenase expression. Proc Natl Acad Sci USA 88: 10749–10753

    CAS  PubMed  Google Scholar 

  • Toussaint B, Delic-Attree I, David L, de Sury ďAspremont R, Vinçon M. and Vignais PM (1993) Purification of the integration host factor-like protein of Rhodobacter capsulatus. Cloning and sequencing of the hip gene which encodes the β-subunit. J Bacteriol 175: 6499–6504

    CAS  PubMed  Google Scholar 

  • Toussaint B, David L, de Sury ďAspremont R and Vignais PM (1994) The IHF proteins of Rhodobacter capsulatus and of Pseudomonas aeruginosa. Biochimie 76: 951–957

    Article  CAS  PubMed  Google Scholar 

  • Uffen RL (1978) Fermentative metabolism and growth of photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 857–872. Plenum Press, New York

    Google Scholar 

  • Uffen RL, Colbeau A, Richaud P and Vignais PM (1990) Cloning and sequencing the genes encoding hydrogenase subunits of Rhodocyclus gelatinosus. Mol Gen Genet 221: 49–58

    Article  CAS  PubMed  Google Scholar 

  • Van Niel CB (1944) The culture, general physiology, morphology and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8: 1–118

    PubMed  Google Scholar 

  • Van Soom C, Verreth C, Sampaio MJ and Vanderleyden J (1993a) Identification of a potential transcriptional regulator of hydrogenase activity in free-living Bradyrhizobium japonicum strains. Mol Gen Genet 239: 235–240

    PubMed  Google Scholar 

  • Van Soom C, Browaeys J, Verreth C and Vanderleyden J (1993b) Nucleotide sequence analysis of four genes, hupC, hupD, hupF and hupG, downstream of the hydrogenase structural genes in Bradyrhizobium japonicum. J Mol Biol 234: 508–512

    PubMed  Google Scholar 

  • Vignais PM and Toussaint B (1994) Molecular biology of membrane-bound H2 uptake hydrogenases. Arch Microbiol 161: 1–10 Erratum (1994) 161: 196

    CAS  PubMed  Google Scholar 

  • Vignais PM, Colbeau A, Willison JC and Jouanneau Y (1985) Hydrogenase, nitrogenase and hydrogen metabolism in the photosynthetic bacteria. Adv Microbiol Physiol 26: 155–234

    CAS  Google Scholar 

  • Voelskow H and Schön G (1980) H2 production of Rhodospirillum rubrum during adaptation of anaerobic dark conditions. Archiv Microbiol 125: 245–249

    CAS  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M and Fontecilla-Camps JC (1995) Crystal structure of the nickeliron hydrogenase from Desulfovibrio gigas. Nature 373: 580–587

    Article  CAS  PubMed  Google Scholar 

  • Voordouw G (1992) Evolution of hydrogenase genes. Adv Inorg Chem 38: 397–422

    CAS  Google Scholar 

  • Wall JD, Weaver PF and Gest H (1975) Genetic transfer of nitrogenase-hydrogenase activity in Rhodopseudomonas capsulata. Nature 258: 630–631

    Article  CAS  PubMed  Google Scholar 

  • White SW, Appelt K, Wilson KS and Tanaka I (1989) A protein structural motif that bends DNA. Proteins: Structure, Function, and Genetics 5: 281–288

    Article  CAS  Google Scholar 

  • Willison JC (1993) Biochemical genetics revisited: The use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria. FEMS Microbiology Reviews 104: 1–38

    CAS  Google Scholar 

  • Willison JC and Tissot G (1994) The Escherichia coli efg gene and the Rhodobacter capsulatus adgA gene code for NAD synthetase. J Bacteriol 176: 3400–3402

    CAS  PubMed  Google Scholar 

  • Willison JC, Madern D and Vignais PM (1984) Increased photoproduction of hydrogen by non-autotrophic mutants of Rhodopseudomonas capsulata. Biochem J 219: 593–600

    CAS  PubMed  Google Scholar 

  • Willison JC, Ahombo G, Chabert J, Magnin JP and Vignais PM (1985) Genetic mapping of Rhodopseudomonas capsulata chromosome shows non clustering of genes involved in nitrogen fixation. J Gen Microbiol 131: 3001–3015

    CAS  Google Scholar 

  • Willison JC, Ahombo G and Vignais PM (1990) Genetic control of nitrogen metabolism in the photosynthetic bacterium Rhodobacter capsulatus. In: Ullrich WR, Rigano C, Fuggi A and Aparicio PJ (eds) Inorganic Nitrogen in Plants and Microorganisms. Uptake and Metabolism, pp 312–319. Springer-Verlag, Berlin

    Google Scholar 

  • Winter HC and Burris RH (1968) Stoichiometry of the adenosine triphosphate requirement for N2 fixation and H2 evolution by a partially purified preparation of Clostridium pasteurianum. J Biol Chem 243: 940–944

    CAS  PubMed  Google Scholar 

  • Wu LF and Mandrand MA (1993) Microbial hydrogenases: Primary structure, classification, signatures and phylogeny. FEMS Microbiol Rev 104: 243–270

    CAS  Google Scholar 

  • Xu HW and Wall JD (1991) Clustering of genes necessary for hydrogen oxidation in Rhodobacter capsulatus. J Bacteriol 173: 2401–2405

    CAS  PubMed  Google Scholar 

  • Xu HW, Love J, Borghese R and Wall JD (1989) Identification and isolation of genes essential for H2 oxidation in Rhodobacter capsulatus. J Bacteriol 171: 714–721

    CAS  PubMed  Google Scholar 

  • Yoch DC (1978) Nitrogen fixation and hydrogen metabolism by photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 657–672. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vignais, P.M., Toussaint, B., Colbeau, A. (1995). Regulation of Hydrogenase Gene Expression. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_55

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_55

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics