Skip to main content

The Proton-Translocating F0F1 ATP Synthase-ATPase Complex

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

The F0F1 ATP synthase is responsible for electron-transport coupled ATP synthesis in every living cell, and functions also as a reversible ATPase. It is composed of an integral membrane sector, F0, containing four subunits in a stoichiometry of a1b1b11c6−12, and an extrinsic sector, F1, containing five subunits in a stoichiometry of α3β3γ1δ1ε1. The detailed structure of the catalytic site and mechanism of action of this very complex enzyme are still unknown. Work by many research groups led to isolation of the whole F0F1 complex and the F1-ATPase from many bacteria. From Rhodospirillum rubrum chromatophores the catalytic RrF1 -αβ-core complex and the RrF1β subunit have also been isolated. Removal of all RrF1β from the membrane enabled the separation of inactive, but fully reconstitutable β-less Rs. rubrum chromatophores. The RrF1γ subunit could be sequentially removed from these chromatophores. All isolated whole and partial complexes and individual subunits have been purified and characterized. Most important results include: 1) Demonstration of a low but continuous light-driven ATP synthesis by purified RcF0F1 reconstituted into phospholipid vesicles together with reaction centers and a cytochrome bc1 complex purified from the same bacteria. This is a first step towards reconstitution of a functional photosynthetic membrane. 2) Formation and characterization of active hybrid membrane-bound F1-ATPases by reconstituting β-less Rs. rubrum chromatophores with F1β subunits isolated from E. coli EcF and spinach The restored ATPase activity demonstrated the functional homology of all F1β subunits, but their different response to various known F1 effectors. 3) Characterization of two binding sites for ATP and ADP on the purified RrF1β. One of them, which does also bind P1 appears to be the catalytic site of the F1-ATPase. Recent successful attempts at cloning and functional expression of this RrF1β subunit open up exciting possibilities for future research aimed at elucidating the structure of this catalytic site and identifying amino acid residues essential for assembly of the F1β subunit into an active F1-ATPase.

A concerted effort involving biochemical, genetic, electron microscopic and crystallographic techniques will hopefully lead to resolution of the as yet enigmatic mechanism of action of this most important enzyme complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams JP, Leslie AGW, Lutter R and Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochrondria. Nature 370: 621–628

    Article  CAS  PubMed  Google Scholar 

  • Andralojc PJ and Harris DA (1992) Isolation and characterisation of a functional αβ heterodimer from ATP synthase of Rhodospirillum rubrum. FEBS Lett 310: 187–192

    Article  CAS  PubMed  Google Scholar 

  • Andralojc PJ and Harris DA (1993) Preparation and characterisation of an αβ heterodimer from the ATP synthase of Rhodospirillum rubrum. Biochim Biophys Acta 1143: 51–66

    CAS  Google Scholar 

  • Avital S and Gromet-Elhanan Z (1990) Isolation of an active β subunit from chloroplast CF0F1-ATP synthase. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol III, pp 45–48. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Avital S and Gromet-Elhanan Z (1991) Extraction andpurification of the β subunit and an active αβ-core complex from the spinach chloroplast CF0F1-ATP synthase. J Biol Chem 266: 7067–7072

    CAS  PubMed  Google Scholar 

  • Avni A, Avital S and Gromet-Elhanan Z (1991) Reactivation of the chloroplast CF2-ATPase β subunit by trace amounts of the CF1 α subunit suggests a chaperonin-like activity for CF1α J Biol Chem 266: 7317–7320

    CAS  PubMed  Google Scholar 

  • Baccarini-Melandri A and Melandri BA (1971) Partial resolution of the photophosphorylating system of Rhodopseudomonas capsulata. Methods Enzymol 23: 556–561

    CAS  Google Scholar 

  • Baccarini-Melandri A and Melandri BA (1978) Coupling factors. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 615–628. Plenum Press, New York

    Google Scholar 

  • Baccarini-Melandri A, Gest H and San Pietro A (1970) A coupling factor in bacterial photophosphorylation. J Biol Chem 245: 1224–1226

    CAS  PubMed  Google Scholar 

  • Baccarini-Melandri A, Melandri BA and Hauska G (1979) The stimulation of photophosphorylation and ATPase by artificial redox mediators in chromatophores of Rhodopseudomonas capsulata at different redox potentials. J Bioenerg Biomembr 11: 1–16

    Article  CAS  PubMed  Google Scholar 

  • Baltscheffsky M, Nadanaciva S and Harris DA (1992) Cloning and expression in Escherichia coli of the β subunit from Rhodospirillum rubrum F1-ATPase. In: Murata N (ed) Research in Photosynthesis, Vol III, pp 385–388. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Beechey RB, Hubbard SA, Linnett PE, Mitchell AD and Munn EA (1975) A simple and rapid method for the preparation of adenosine triphosphatase from submitochondrial particles. Biochem J 148: 533–537

    CAS  PubMed  Google Scholar 

  • Bengis-Garber C and Gromet-Elhanan Z (1979) Purification of the energy-transducing adenosine triphosphatase complex from Rhodospirillum rubrum. Biochemistry 18: 3577–3581

    Article  CAS  PubMed  Google Scholar 

  • Berzborn RJ, Johansson BC and Baltscheffsky M (1975) Immunological and fluorescence studies with the coupling factor ATPase from Rhodospirillum rubrum. Biochim Biophys Acta 396: 360–370

    CAS  PubMed  Google Scholar 

  • Bianchet M, Ysern X, Hullihen J, Pedersen PL and Amzel LM (1991) Mitochondrial ATP synthase. Quaternary structure of the F1 moiety at 3·6ī determined by X-ray diffraction analysis. J Biol Chem 266: 197–212

    Google Scholar 

  • Binder A and Bachofen R (1979) Isolation and characterization of a coupling factor I ATPase of the thermophilic blue-green alga (cyanobacterium) Mastigocladus laminosus. FEBS Lett 104: 66–70

    Article  CAS  PubMed  Google Scholar 

  • Binder A and Gromet-Elhanan Z (1974) Depletion and reconstitution of photophosphorylation in chromatophore membranes of Rhodospirillum rubrum. In: Avron M (ed) Proceedings of the Third International Congress on Photosynthesis, pp 1163–1170. Elsevier Scientific Publishing Co., Amsterdam

    Google Scholar 

  • Blumenstein S, Leu S, Abu-Much E, Bar-Zvi D, Shavit N and Michaels A (1990) Expression of the chloroplast atpB gene of Chlamydomonas reinhardtii in E. coli. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol III, pp 193–196. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Boyer PD (1987) The unusual enzymology of ATP synthase. Biochemistry 26: 8503–8507

    Article  CAS  PubMed  Google Scholar 

  • Boyer PD (1993) The binding change mechanism for ATP synthase-Some probabilities and possibilities. Biochim Biophys Acta 1140: 215–250

    CAS  PubMed  Google Scholar 

  • Casadio R (1988) The oligomycin-sensitive Ca-ATPase of chromatophores from photosynthetic bacteria is not coupled to ΔμH+ generation. In: Stein W (ed) The Ion Pumps: Structure, Function and Regulation, pp 201–206. Alan R. Liss, Inc., New York

    Google Scholar 

  • Ceccarelli E and Vallejos RH (1983) Two types of essential carboxyl groups in Rhodospirillum rubrum. Arch Biochem Biophys 224: 382–388

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Wu I, Richter ML and Gegenheimer P (1992) Over-expression and refolding of β-subunit from the chloroplast ATP synthase. FEBS Lett 298: 69–73

    Article  CAS  PubMed  Google Scholar 

  • Collinson IR, Runswick MJ, Buchanan SK, Fearnly IM, Skehel JM, Van Raaij Mj, Griffiths DE and Walker JE (1994) F0 membrane domain of ATP synthase from bovine heart mitochondria: Purification, subunit composition, and reconstitution with F1-ATPase. Biochemistry 33: 7971–7978

    Article  CAS  PubMed  Google Scholar 

  • Cortez N, Lucero HA and Vallejos RH (1983) Inactivation of Rhodospirillum rubrum coupling factor by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Biochim Biophys Acta 724: 396–403

    CAS  Google Scholar 

  • Cox GB, Devenish RJ, Gibson F, Howitt SM and Nagley P (1992) The structure and assembly of ATP synthase. In: Ernster L (ed) Molecular Mechanisms in Bioenergetics, pp 283–315. Elsevier

    Google Scholar 

  • Cozens AL and Walker JE (1987) The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. Support for an endosymbiotic origin of chloroplasts. J Mol Biol 194: 359–383

    Article  CAS  PubMed  Google Scholar 

  • Cross RL and Kohlbrenner WE (1978) The mode of inhibition of oxidative phosphorylation by efrapeptin (A23871). J Biol Chem 253: 4865–873

    CAS  PubMed  Google Scholar 

  • Deckers-Hebestreit G and Altendorf K (1992) The F0 complex of the proton-translocating F-type ATPase of Escherichia coli. J Exp Biol 172: 451–459

    CAS  PubMed  Google Scholar 

  • Dunn DF and Heppel LA (1981) Properties and functions of the subunits of the Escherichia coli coupling factor ATPase. Arch Biochem Biophys 210: 421–436

    Article  CAS  PubMed  Google Scholar 

  • Edwards PA and Jackson JB (1976) The control of the adenosine triphosphatase of Rhodospirillum rubrum chromatophores by divalent cations and the membrane high energy state. Eur J Biochem 62: 7–14

    CAS  PubMed  Google Scholar 

  • Falk G and Walker E (1988) DNA sequence of a gene cluster coding for subunits of the F0 membrane sector of ATP synthase in Rhodospirillum rubrum. Biochem J 254: 109–122

    CAS  PubMed  Google Scholar 

  • Falk G, Hampe A and Walker JE (1985) Nucleotide sequence of the Rhodospirillum rubrum atp operon. Biochem J 228: 391–407

    CAS  PubMed  Google Scholar 

  • Ferguson SJ and Sorgato MC (1982) Protein electrochemical gradients and energy-transduction processes. Ann Rev Biochem 51: 185–217

    CAS  PubMed  Google Scholar 

  • Fillingame RH (1990) Molecular mechanics of ATP synthesis by F0F1-type H+-transporting ATP synthases. In: Krulwich TA (ed) The Bacteria, Vol 12, pp 345–391. Academic Press, San Diego

    Google Scholar 

  • Fisher RJ, Liang AM and Sundström GC (1981) Selective disaggregation of the H+-translocating ATPase. J Biol Chemd 256: 707–715

    CAS  Google Scholar 

  • Futai M and Kanazawa H (1983) Structure and function of proton-translocating adenosine triphosphatase (F0F1): Biochemical and molecular biological approaches. Microbiol Rev 47: 285–312

    CAS  PubMed  Google Scholar 

  • Futai M, Noumi T and Maeda M (1989) ATP synthase (H+-ATPase): Results by combined biochemical and molecular biological approaches. Annu Rev Biochem 58: 111–136

    Article  CAS  PubMed  Google Scholar 

  • Gabellini N, Gao Z, Eckerskorn C, Lottspeich F and Oesterhelt D (1988) Purification of the H+-ATPase from Rhodobacter capsulatus, identification of the F0F1 components and reconstitution of the active enzyme. Biochim Biophys Acta 934: 227–234

    CAS  Google Scholar 

  • Gabellini N, Gao Z, Oesterhelt D, Venturoli G and Melandri BA (1989) Reconstitution of cyclic electron transport and photophosphorylation by incorporation of the reaction center, cytochrome bc1 complex and ATPsynthase from Rhodobacter capsulatus into ubiquinine-10/phospholipid vesicles. Biochim Biophys Acta 974: 202–210

    CAS  Google Scholar 

  • Gepshtein A and Carmeli C (1974) Properties of adenosine triphosphatase in chromatophores and in coupling factor from the photosynthetic bacteria Chromatium strain D. Eur J Biochem 44: 593–602

    Article  CAS  PubMed  Google Scholar 

  • Gepshtein A and Carmeli C (1977) Properties of ATPase activity in coupling factor from Chromatium strain D chromatophores. Eur J Biochem 74: 463–469

    Article  CAS  PubMed  Google Scholar 

  • Gepshtein A, Carmeli C and Nelson N (1978) Purification and properties of adenosine triphosphatase from Chromatium vinosum chromatophores. FEBS Lett 85: 219–223

    Article  CAS  PubMed  Google Scholar 

  • Girault G, Berger G, Galmisch JM and Andre F (1988) Characterization of six nucleotide-binding sites on chloroplast coupling factor 1 and one site on itspurified β subunit. J Biol Chem 263: 14690–14695

    CAS  PubMed  Google Scholar 

  • Glaser E and Norling B (1991) Chloroplast and plant mitochondrial ATP synthases. In: Lee CP (ed) Current Topics in Bioenergetics, Vol 16, pp 223–263. Academic Press, San Diego

    Google Scholar 

  • Gogol EP, Lucken V and Capaldi RA (1987) The stalk connecting the F1 and F2 domains of ATP synthase visualized by electron microscopy of unstained specimens. FEBS Lett 219: 274–278

    Article  CAS  PubMed  Google Scholar 

  • Graber P, Böttcher B and Boekema E (1990) The structure of the ATP synthase from chloroplasts. In: Milazzo G and Blank M (eds) Bioelectrochemistry, Vol III, pp 247–276. Plenum Press, New York

    Google Scholar 

  • Gromet-Elhanan Z (1974a) Role of photophosphorylation coupling factor in energy conversion by depleted chromatophores of Rhodospirillum rubrum. J Biol Chem 249: 2522–2527

    CAS  PubMed  Google Scholar 

  • Gromet-Elhanan Z (1974b) Effect of aurovertin on energy conversion reactions in Rhodospirillum rubrum chromatophores. In: Avron M (ed) Proceedings of the Third International Congress on Photosynthesis, pp 791–797. Elsevier, Amsterdam

    Google Scholar 

  • Gromet-Elhanan Z (1977) Electron transport and photophosphorylation in photosynthetic bacteria. In: Trebst A and Avron M (eds) Encyclopedia of Plant Physiology, New Series Vol 5, pp 637–662. Springer-Verlag, Berlin

    Google Scholar 

  • Gromet-Elhanan Z (1988) Determination of the functional homology of β subunits isolated from various F1-ATPase complexes: Their role in catalysis and coupled proton-translocation. In: Stein W. (ed) The Ion Pumps: Structure, Function and Regulation, pp 299–306. Alan R. Liss, Inc. New York

    Google Scholar 

  • Gromet-Elhanan Z (1992) Identification of subunits required for the catalytic activity of the F1-ATPase. J Bioenerg Biomembr 24: 447–452

    CAS  PubMed  Google Scholar 

  • Gromet-Elhanan Z and Avital S (1992) Properties of the catalytic complex of chloroplast CF1-ATPase. Biochim Biophys Acta 1102: 379–385

    CAS  Google Scholar 

  • Gromet-Elhanan Z and Gest H (1978) A comparison of electron transport and photophosphorylation systems of Rhodopseudomonas capsulata and Rhodospirillum rubrum. Arch Microbiol 116: 29–34

    Article  CAS  PubMed  Google Scholar 

  • Gromet-Elhanan Z and Khananshvili D (1984) Characterization of two nucleotide binding sites on the isolated, reconstitutively active β subunit of the F0F1 ATP synthase. Biochemistry 23: 1022–1028

    Article  CAS  Google Scholar 

  • Gromet-Elhanan Z and Khananshvili D (1986) Selective extraction and reconstitution of F1 subunits from Rhodospirillum rubrum chromatophores. Methods Enzymol 126: 528–538

    CAS  Google Scholar 

  • Gromet-Elhanan Z and Weiss S (1989) Regulation of ΔμH+− coupled ATP synthesis and hydrolysis: role of divalent cations and of the F0F1-β subunit. Biochemistry 28: 3645–3650

    Article  CAS  Google Scholar 

  • Gromet-Elhanan Z, Philosoph S and Khananshvili D (1981) Sequential removal and reconstruction of subunits β and γ of the Rhodospirillum rubrum membrane-bound ATP synthase. In: Selman B and Selman-Reimer S (eds) Energy Coupling in Photosynthesis, pp 323–332. Elsevier, North Holland

    Google Scholar 

  • Gromet-Elhanan Z, Khananshvili D, Weiss S, Kanazawa H and Futai M (1985) ATP synthesis and hydrolysis by a hybrid system reconstituted from the β-subunit of Escherichia coli F1-ATPase and β-less chromatophores of Rhodospirillum rubrum. J Biol Chem 260: 12635–12640

    CAS  PubMed  Google Scholar 

  • Harada M, Ohta S, Sato M, Ito Y, Kobayashi Y, Sone N, Ohta T and Kagawa Y (1991) The α1β1 heterodimer, the unit of ATP synthase. Biochim Biophys Acta 1056: 279–284

    CAS  Google Scholar 

  • Harris DA, Boork J and Baltscheffsky M (1985) Hydrolysis of adenosine 5′-triphosphate by the isolated catalytic subunit of the coupling ATPase from Rhodospirillum rubrum. Biochemistry 24: 3876–3883

    CAS  Google Scholar 

  • Hatefi Y (1993) ATP synthesis in mitochondria. Eur J Biochem 218: 759–767

    Article  CAS  PubMed  Google Scholar 

  • Hauska G, Samoray D, Orlich G and Nelson N (1980) Reconstitution of photosynthetic energy conservation. II. Photophosphorylation in liposomes containing Photosystem-I reaction center and chloroplast coupling-factor complex. Eur J Biochem 111: 535–543

    Article  CAS  PubMed  Google Scholar 

  • Hermann RG, Steppuhn J, Herrmann GS and Nelson N (1993) The nuclear-encoded polypeptide CF0-II from spinach is a real, ninth subunit of chloroplast ATP synthase. FEBS Lett 326: 192–198

    Google Scholar 

  • Hicks DB and Yocum CF (1986a) Properties of the cyanobacterial coupling factor ATPase from Spirulina platensis. Arch Biochem Biophys 245: 220–229

    CAS  PubMed  Google Scholar 

  • Hicks DB and Yocum CF (1986b) Properties of the cyanobacterial coupling factor ATPase from Spirulina platensis. II. Activity of the purified and membrane-bound enzymes. Arch Biochem Biophys 245: 230–237

    CAS  PubMed  Google Scholar 

  • Hochman A and Carmeli C (1971) A coupling factor from Chromatium strain D chromatophores. FEBS Lett 13: 36–40

    Article  CAS  PubMed  Google Scholar 

  • Hoppe J and Sebald W (1984) The proton conducting F0-part of bacterial ATP synthases. Biochim Biophys Acta 768: 1–27

    CAS  PubMed  Google Scholar 

  • Issartel JP, Dupuis A, Garin J, Lunardi J, Michel L and Vignais PV (1992) The ATP synthase (F0F1) complex in oxidative phosphorylation. Experientia 48: 351–362

    Article  CAS  PubMed  Google Scholar 

  • Jagendorf AT and Uribe E (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA 55: 170–177

    CAS  PubMed  Google Scholar 

  • Jagendorf AT, McCarty RE and Robertson D (1991) Coupling factor components: Structure and function. In: Bogorad L and Vasil IK (eds) Cell Culture and Somatic Cell Genetics of Plants, Vol 7B, pp 225–254. Academic Press, San Diego

    Google Scholar 

  • Johansson BC (1972) A coupling factor from Rhodospirillum rubrum chromatophores. FEBS Lett 20: 339–340

    Article  CAS  PubMed  Google Scholar 

  • Johansson BC and Baltscheffsky M (1975) On the subunit composition of the coupling factor (ATPase) from Rhodospirillum rubrum. FEBS Lett 53: 221–224

    Article  CAS  PubMed  Google Scholar 

  • Johansson BC, Baltscheffsky M and Baltscheffsky H (1971) Coupling factor capabilities with chromatophore fragments from Rhodospirillum rubrum. In: Forti G, Avron M and Melandri A (eds) Proceedings of the IInd International Congress on Photosynthesis Research, Vol 2, pp 1203–1209. Dr. W Junk N.V., The Hague

    Google Scholar 

  • Johansson BC, Baltscheffsky M and Baltscheffsky H (1973) Purification and properties of a coupling factor (Ca2+-dependent adenosine triphosphatase) from Rhodospirillum rubrum. Eur J Biochem 40: 109–117

    Article  CAS  PubMed  Google Scholar 

  • Kagawa Y, Ohta S and Otawara-Hamamoto Y (1989) α3β3 complex of thermophilic ATP synthase: Catalysis without the γ-subunit. FEBS Lett 249: 67–69

    Article  CAS  PubMed  Google Scholar 

  • Khananshvili D and Gromet-Elhanan Z (1982) Isolation and purification of an active γ-subunit of the F0F1-ATP synthase from chromatophore membranes of Rhodospirillum rubrum. J Biol Chem 257: 11377–11383

    CAS  PubMed  Google Scholar 

  • Khananshvili D and Gromet-Elhanan Z (1983a) The interaction of 4-Chloro-7-nitrobenzofurazan with Rhodospirillum rubrum chromatophores, their soluble F1-ATPase, and the isolated purified β-subunit. J Biol Chem 258: 3714–3719

    CAS  PubMed  Google Scholar 

  • Khananshvili D and Gromet-Elhanan Z (1983b) The interaction of carboxyl group reagents with the Rhodospirillum rubrum F1-ATPase and its isolated β-subunit. J Biol Chem 258: 3720–3725

    CAS  PubMed  Google Scholar 

  • Khananshvili D and Gromet-Elhanan Z (1983c) Modification of histidine residues by diethyl pyrocarbonate leads to inactivation of the Rhodospirillum rubrum RrF1-ATPase. FEBS Lett 159: 271–274

    Article  CAS  Google Scholar 

  • Khananshvili D and Gromet-Elhanan Z (1984) Demonstration of two binding sites for ADP on the isolated β-subunit of the Rhodospirillum rubrum RrF0F1-ATP synthase. FEBS Lett 178: 10–14.

    Article  CAS  Google Scholar 

  • Khananshvili D and Gromet-Elhanan Z (1985a) Characterization of an inorganic phosphate binding site on the isolated, reconstitutively active β subunit of F0F1 ATP synthase. Biochemistry 24: 2482–2487

    Article  CAS  Google Scholar 

  • Khananshvili D and Gromet-Elhanan Z (1985b) Evidence that the Mg-dependent low-affinity binding site for ATP and P i demonstrated on the isolated β subunit of the F0F1 ATP synthase is a catalytic site. Proc Natl Acad Sci USA 82: 1886–1890

    CAS  PubMed  Google Scholar 

  • Khananshvili D and Gromet-Elhanan Z (1986) Partial proteolysis as a probe for ligand-induced conformational changes in the isolated β subunit of the H+-translocating F0F1 ATP synthase. Biochemistry 25: 6139–6144

    CAS  Google Scholar 

  • Leiser M and Gromet-Elhanan Z (1974) Demonstration of acid-base phosphorylation in chromatophores in the presence of a K+ diffusion potential. FEBS Lett 43: 267–270

    Article  CAS  PubMed  Google Scholar 

  • Low H and Afzelius BA (1965) Subunits of the chromatophore membranes in Rhodospirillum rubrum. Exp Cell Biol 35: 431–434

    Google Scholar 

  • Lubberding HJ, Offerijns F, Vel WAC and de Vries PJR (1981) Characterization of the ATPase of the thermophilic cyanobacterium Synechococcus lividus. In: A Koyanoglou G (ed) Photosynthesis II. Electron Transport and Photophosphorylation, pp 779–788. Balaban Int. Sci. Services, Philadelphia

    Google Scholar 

  • McCarty RE and Moroney JV (1985) Structure and function of chloroplast coupling factor 1. In: Martonosi A (ed) The Enzymes of Biological Membranes, pp 383–413. Plenum Press, New York

    Google Scholar 

  • Melandri BA and Baccarini-Melandri A (1971) Energytransduction in photosynthetic bacteria. I. Properties of solubilized and reconstituted ATPase in Rhodopseudomonas capsulata photosynthetic membranes. In: Forti G, Avron M and Melandri A (eds) Proceedings of the IInd International Congress on Photosynthesis Research, Vol 2, pp 1169–1192. Dr. W Junk N.V., The Hague

    Google Scholar 

  • Mitchell P (1966) Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Glynn Research Ltd., Bodmin

    Google Scholar 

  • Miwa K and Yoshida M (1989) The α3β3 complex, the catalytic core of F1-ATPase. Proc Natl Acad Sci USA 86: 6484–6487

    CAS  PubMed  Google Scholar 

  • Müller H, Neufang H and Knobloch K (1982) Purification and properties of the coupling-factor ATPases F1 from Rhodopseudomonas palustris and Rhodopseudomonas sphaeroides. Eur J Biochem 127: 559–566

    PubMed  Google Scholar 

  • Müller H, Neufang H and Knobloch K (1983) Kinetic studies on the membrane-bound and the purified coupling factor ATPase from Rhodopseudomonas sphaeroides. Arch Biochem Biophys 224: 283–289

    PubMed  Google Scholar 

  • Müller HW and Baltscheffsky M (1979) On the oligomycinsensitivity and subunit composition of the ATPase complex from Rhodospirillum rubrum. Z Naturforsch 34c: 229–232

    Google Scholar 

  • Müller HW, Schwuléra U, Salzer M and Dose K (1979) Purification, subunit structure, and kinetics of the chloroform-released F1ATPase complex from Rhodospirillum rubrum and its comparison with F1ATPase Forms isolated by other methods. Z Naturforsch 34: 38–45.

    Google Scholar 

  • Nalin CM and Nelson N (1987) Structure and biogenesis of the chloroplast coupling factor CF0CF1-ATPase. In: Lee CP (ed) Current Topics in Bioenergetics, Vol 15, pp 273–294. Academic Press, San Diego

    Google Scholar 

  • Nathanson L and Gromet-Elhanan Z (1994) Cloning and functional expression of wild type and mutant β subunits of the Rhodospirillum rubrum F0F1 ATP synthase. In: 8th European Bioenergetics Conferece (EBEC) Short Reports, Vol 8, p 19. Elsevier, Amsterdam

    Google Scholar 

  • Nelson N, Nelson H and Racker E (1972) Partial resolution of the enzymes catalyzing photophosphorylation. XI. Magnesium adenosine triphosphatase properties of heat-activated coupling factor I from chloroplasts. J Biol Chem 247: 6506–6510

    CAS  PubMed  Google Scholar 

  • Nemoto H, Ohta Y, Hisobori T, Shinohara K and Sakurai H (1990) Isolation, purification and characterization of coupling factor ATPase from Anacystis nidulans. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol III, pp 169–172. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Norling B, Strid Å and Nyrén P (1988) Conversion of coupling factor 1 of Rhodospirillum rubrum from a Ca2+-ATPase into a Mg2+-ATPase. Biochim Biophys Acta 935: 123–129

    CAS  PubMed  Google Scholar 

  • Norling B, Strid Å Tourikas C and Nyrén P (1989) Amount and turnover rate of the F0F1-ATPase and the stoichiometry of its inhibition by oligomycin in Rhodospirillum rubrum chromatophores. Eur J Biochem 186: 333–337

    Article  CAS  PubMed  Google Scholar 

  • Nyrén P and Baltscheffsky M (1983) Inorganic pyrophosphate-driven ATP-synthesis in liposomes containing membrane-bound inorganic pyrophosphatase and F0-F1 complex from Rhodospirillum rubrum. FEBS Lett 155: 125–130

    Article  PubMed  Google Scholar 

  • Ohta Y, Yoshioka T, Mochimaru M, Hisabori T and Sakurai H (1993) Tentoxin inhibits both photophosphorylation in thylakoids and the ATPase activity of isolated coupling factor Fl from the cyanobacterium Anacystis nidulans. Plant Cell Physiol 34: 523–529

    CAS  Google Scholar 

  • Oren R and Gromet-Elhanan Z (1977) Coupling factor adenosine triphosphatase-complex of Rhodospirillum rubrum. Isolation of an oligomycin-sensitive Ca2+, Mg2+-ATPase. FEBS Lett 79: 147–150

    Article  CAS  PubMed  Google Scholar 

  • Oren R and Gromet-Elhanan Z (1979) Coupling factor ATPase complex of Rhodospirillum rubrum. Purification and characterization of an oligomycin and N-N’-dieyclohexyl. carbodiimide-sensitive (Ca2++Mg2+)-ATPase. Biochim Biophys Acta 548: 106–118

    CAS  PubMed  Google Scholar 

  • Oren R, Weiss S, Garty H, Caplan SR and Gromet-Elhanan Z (1980) ATP synthesis catalyzed by the ATPase complex from Rhodospirillum rubrum reconstituted into phospholipid vesicles together with bacteriorhodopsin. Arch Biochem Biophys 205: 503–509

    Article  CAS  PubMed  Google Scholar 

  • Otto J and Berzborn RJ (1989) Quantitative immunochemical evidence for identical topography of subunits CF0II and CF0I within the photosynthetic ATP-synthase of spinach chloroplasts. FEBS Lett 250: 625–628

    Article  CAS  Google Scholar 

  • Pedersen PL and Amzel LM (1993) ATP synthases. Structure, reaction center, mechanism, and regulation of one of nature’s most unique machines. J Biol Chem 268: 9937–9940

    CAS  PubMed  Google Scholar 

  • Penefsky HS and Cross RL (1991) Structure and mechanism of F0F1-type ATP synthases and ATPases. Adv Enzymol 64: 173–214

    CAS  PubMed  Google Scholar 

  • Philosoph S and Gromet-Elhanan Z (1981a) Antibodies to the F1-ATPases of Rhodospirillum rubrum and its purified native β subunit: Inhibition of ATP-linked activities in Rs. rubrum and in lettuce. Eur J Biochem 119: 107–113

    Article  CAS  PubMed  Google Scholar 

  • Philosoph S and Gromet-Elhanan Z (1981b) Sequential removal of specific subunits from the ATPase complex of Rhodospirillum rubrum. In: Akoyunoglou G (ed) Photosynthesis II. Electron Transport and Photophosphorylation, pp 741–751. Balaban Intl Sci Services, Philadelphia

    Google Scholar 

  • Philosoph S, Binder A and Gromet-Elhanan Z (1977) Coupling factor ATPase complex of Rhodospirillum rubrum. Purification and properties of a reconstitutively active single subunit. J Biol Chem 252: 8747–8752

    CAS  PubMed  Google Scholar 

  • Philosoph S, Khananshvili D and Gromet-Elhanan Z (1981) Sequential removal and reconstitution of subunits β and γ from a membrane-bound F0F1-ATP synthase. Biochem Biophys Res Commun 101: 384–389

    Article  CAS  PubMed  Google Scholar 

  • Pick U and Bassilian S (1982) Activation of magnesium ion specific adenosinetriphosphatase in chloroplast coupling factor 1 by octyl glucoside. Biochemistry 24: 6144–6152

    Google Scholar 

  • Pick U and Racker E (1979) Purification and reconstitution of the N,N’-dicyclohexylcarbo-dumide-sensitive ATPase complex from spinach chloroplasts. J Biol Chem 254: 2793–2799

    CAS  PubMed  Google Scholar 

  • Prince RC, Baccarini-Melandri A, Hauska GA, Melandri BA and Crofts AR (1975) Asymmetry of an energy transducing membrane: The location of cytochrome C2 in Rhodopseudomonas spheroides and Rhodopseudomonas capsulata. Biochim Biophys Acta 387: 212–227

    CAS  PubMed  Google Scholar 

  • Racker E (1976) A New Look at Mechanism in Bioenergetics, Academic Press, New York

    Google Scholar 

  • Ravizzini RA, Lescano WIM and Vallejos RH (1975) Effect of aurovertin on energy transfer reactions in Rhodospirillum rubrum chromatophores. FEBS Lett 58: 285–288

    Article  CAS  PubMed  Google Scholar 

  • Reed DW and Raveed D (1972) Some properties of the ATPase from chromatophores of Rhodopseudomonas sphaeroides and its structural relationship to bacteriochlorophyll proteins. Biochim Biophys Acta 283: 79–91

    CAS  PubMed  Google Scholar 

  • Richter ML, Gromet-Elhanan Z and McCarty RE (1986) Reconstitution of the H+-ATPase complex of Rhodospirillum rubrum by the β subunit of the chloroplast coupling factor 1. J Biol Chem 261: 12109–12113

    CAS  PubMed  Google Scholar 

  • Schafer HJ, Müller HW and Dose K (1980) Conversion of the Ca2+-ATPasc from Rhodospirillum rubrum into a Mg2+-dependent enzyme by 1,N6-etheno ATP. Biochem Biophys Res Commun 95: 1113–1118

    CAS  PubMed  Google Scholar 

  • Schneider E, Schwuléra U, Müller HW and Dose K (1978) Solubilization of an oligomycin-sensitive ATPase complex from Rhodospirillum rubrum chromatophores and its inhibition by various antibiotics. FEBS Lett 87: 257–260

    Article  CAS  Google Scholar 

  • Schneider E, Müller HW, Rittinghaus K, Thiele V, Schwulera U and Dose K (1979) Properties of the F0F1 ATPase complex from Rhodospirillum rubrum chromatophores, solubilized by Triton X-100. Eur J Biochem 97: 511–517

    Article  CAS  PubMed  Google Scholar 

  • Schneider E, Friedl P, Schwuléra U and Dose K (1980) Energy-linked reactions catalyzed by the purified ATPase complex from Rhodospirillum rubrum Chromatophores. Eur J Biochem 108: 331–336

    Article  CAS  PubMed  Google Scholar 

  • Selman BR and Durbin RD (1978) Evidence for a catalytic function of the coupling factor 1 protein reconstituted with chloroplast thylakoid membranes. Biochim Biophys Acta 502: 29–37

    CAS  PubMed  Google Scholar 

  • Shapiro AB, Huber AH and McCarty RE (1991a) Four tight nucleotide binding sites of chloroplast coupling factor 1. J Biol Chem 266: 4194–4200

    CAS  PubMed  Google Scholar 

  • Shapiro AB, Gibson KD, Scheraga HA and McCarty RE (1991b) Fluorescence resonance energy transfer, mapping of the fourth of six nucleotide binding sites of chloroplast coupling factor 1. J Biol Chem 266: 12276–12280

    Google Scholar 

  • Slooten L and Nuyten A (1981) Activation-deactivation reactions in the ATP-ase enzyme in Rhodospirillum rubrum chromatophores. Biochim Biophys Acta 638: 305–312

    CAS  Google Scholar 

  • Slooten L and Vandenbranden S (1989a) Isolation of the proton-translocating F0F1-ATPase from Rhodospirillum rubrum chromatophores, and its functional reconstitution into proteoliposomes. Biochim Biophys Acta 975: 148–157

    CAS  Google Scholar 

  • Slooten L and Vandenbranden S (1989b) ATP-synthesis by proteoliposomes incorporating Rhodospirillum rubrum F0F1 as measured with firefly luciferase: dependence on Δψ and ΔpH. Biochim Biophys Acta 976: 150–160

    CAS  PubMed  Google Scholar 

  • Soe G, Nishi N, Kakuno T and Yamashita J (1978) Reversible conversion from Ca2+-ATPase activity to Mg2+ and Mn2+-ATPase activities of coupling factor purified from acetone powder of Rhodospirillum rubrum chromatophores. J Biochem 84: 805–814

    CAS  PubMed  Google Scholar 

  • Soe G, Nishi N, Kakuno T, Yamashita J and Horio T (1980) Purification and identification of the factor capable of converting Ca2+-ATPasin into Mg2+-ATPase present in Rhodospirillum rubrum chromatophores. J Biochem 87: 473–481

    CAS  PubMed  Google Scholar 

  • Sokolov M, Avital S and Gromet-Elhanan Z (1992) Structure and function of active partial complexes isolated from the chloroplast CF1-ATPase. In: Murata N (ed) Research in Photosynthesis, Vol II, p 653–659. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Steele JA, Uchytil TF, Durbin RD, Bhatnagar P and Rich DH (1976) Chloroplast coupling factor 1: A species-specific receptor for tentoxin. Proc Natl Acad Sci USA 73: 2245–2248

    CAS  Google Scholar 

  • Strid A and Nyren P (1989) Division of divalent cations into two groups in relation to their effect on the coupling of the F0F1-ATPase of Rhodospirillum rubrum to the proton motive force. Biochemistry 28: 9718–9724

    Article  CAS  PubMed  Google Scholar 

  • Strotmann H and Bickel-Sandkötter S (1984) Structure, function, and regulation of chloroplast ATPase. Annu Rev Plant Physiol 35: 97–120

    Article  CAS  Google Scholar 

  • Strotmann H, Hesse H and Edelmann K (1973) Quantitative determination of coupling factor CF1 of chloroplasts. Biochim Biophys Acta 314: 202–210

    CAS  PubMed  Google Scholar 

  • Turina P, Rumberg B, Melandri A and Gräber P (1992) Activation of the H+-ATP synthase in the photosynthetic bacterium Rhodobacter capsulatus. J Biol Chem 267: 11057–11063

    CAS  PubMed  Google Scholar 

  • Tybulewicz VLJ, Falk G and Walker JE (1984) Rhodopseudomonas blastica atp operon. Nucleotide sequence and transcription. J Mol Biol 179: 185–214

    Article  CAS  PubMed  Google Scholar 

  • Tzagoloff A and Meagher P (1971) AssembIy of the mitochondrial membrane system. V. Properties of a dispersed preparation of the rutamycin-sensitive adenosine triphosphatase of yeast mitochondria. J Biol Chem 246: 7328–7336

    CAS  PubMed  Google Scholar 

  • Van Walraven HS, Lubberding HJ, Marvin HJP and Kraayenhof R (1983) Characterization of reconstituted ATPase complex proteoliposomes prepared from the thermophilic cyanobacterium Synechococcus 6716. Eur J Biochem 137: 101–106

    Article  PubMed  Google Scholar 

  • Van Walraven HS, Van der Bend RL, Hagendoorn MJM, Haak NP, Oskam A, Oostdam A, Krab K and Kraayenhof R (1986) Comparison of ATP synthesis efficiencies in ATPase proteoliposomes of different complexities. Bioelectrochem Bioener 16: 167–180

    Google Scholar 

  • Van Walraven HS, Lutter R and Walker JE (1993) Organization and sequences of genes for the subunits of ATP synthase in the thermophilic cyanobacterium Synechococcus 6716. Biochem J 294: 239–251

    PubMed  Google Scholar 

  • Vignais PV and Lunardi J (1985) Chemical probes of the mitochondrial ATP synthesis and translocation. Ann Rev Biochem 54: 977–1014

    CAS  PubMed  Google Scholar 

  • Wagner N, Gutweiler M, Pabst R and Dose K (1987) Coreconstitution of bacterial ATP synthase with monomeric bacteriorhodopsin into liposomes. A comparison between the efficiency of monomeric bacteriorhodopsin and purple membrane patches in coreconstitution experiments. Eur J Biochem 165: 177–183

    Article  CAS  PubMed  Google Scholar 

  • Walker JE, Fearnley IM, Lutter R, Todd RJ and Runswick MJ (1990) Structural aspects of proton-pumping ATPases. Phil Trans R Soc Lond B 326: 367–378

    CAS  Google Scholar 

  • Wang ZG, Wei JM, Wu YQ and Shen YK (1992) Expression of fusion proteins of maize chloroplast CF1 beta subunit in E. coli. In: Murata N (ed) Research in Photosynthesis, Vol III, pp 243–246. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Webster GD and Jackson JB (1978) Affinity chromatography of H+-translocating adenosine triphosphatase isolated by chloroform extraction of Rhodospirillum rubrum chromatophores. Modification of binding affinity by divalent cations and activating anions. Biochim Biophys Acta 503: 135–154

    CAS  PubMed  Google Scholar 

  • Webster GD, Edwards PA and Jackson JB (1977) Interconversion of two kinetically distinct states of the membrane-bound and solubilized H+-translocating ATPase from Rhodospirillum rubrum. FEBS Lett 76: 29–35

    Article  CAS  PubMed  Google Scholar 

  • Weiss S, McCarty RE and Gromet-Elhanan Z (1994) Tight nucleotide binding sites and ATPase activities of the Rhodospirillum rubrum RrF1-ATPase as compared to spinach chloroplast CF1-ATPase. J Bioengr Biomembr 26: 573–580

    CAS  Google Scholar 

  • Wise JG, Duncan TM, Richardson-Latchney L, Cox DN and Senior AE (1983) Properties of F1-ATPase from the uncD412 mutant of Escherichia coli. Biochem J 215: 343–350

    CAS  PubMed  Google Scholar 

  • Xie OL, Lill H, Hauska G, Maeda M, Futai M and Nelson N (1993) The atp2 operon of the green bacterium Chlorobium limicola. Biochim Biophys Acta 1172: 267–273

    CAS  PubMed  Google Scholar 

  • Xue Z, Zhou JM, Melese T, Cross RL and Boyer PD (1987) Chloroplast F1-ATPase has more than three nucleotide binding sites, and 2-azido-ADP or 2-azido-ATP at both catalytic and noncatalytic sites labels the β subunit. Biochem 26: 3749–3753

    CAS  Google Scholar 

  • Yanyushin MF (1988) Isolation and characterization of F1-ATPase from the green nonsulfur photosynthetic bacterium Chloroflexus aurantiacus. Biokhumiya 53: 1288–1295

    CAS  Google Scholar 

  • Yanyushin MF (1991) ATP synthase of the green nonsulfur photosynthetic bacterium Chloroflexus aurantiacus. Biokhimiya 56: 1131–1139

    CAS  Google Scholar 

  • Yoshida M, Allison WS, Esch FS and Futai M (1982) The specificity of carboxyl group modification during the inactivation of the Escherichia coli F1-ATPase with dicyclohexyl-[14C] carbodiimide. J Biol Chem 257: 10033–10037

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gromet-Elhanan, Z. (1995). The Proton-Translocating F0F1 ATP Synthase-ATPase Complex. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_37

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics