Skip to main content

Organization of Electron Transfer Components and Supercomplexes

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard J and Sistrom WR (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol 15: 209–225

    CAS  PubMed  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    CAS  PubMed  Google Scholar 

  • Bartsch RG (1991) The distribution of soluble metallo-redox proteins in purple phototrophic bacteria. Biochim Biophys Acta 1058: 28–30

    CAS  PubMed  Google Scholar 

  • Berry EA and Trumpower BL (1985) Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome aa3 complexes. J Biol Chem 260: 2458–2467

    CAS  PubMed  Google Scholar 

  • Chance B and Smith L (1955) Respiratory systems of R. rubrum. Nature 175: 803–806

    CAS  PubMed  Google Scholar 

  • Cohen-Bazire G, Sistrom WR and Stanier RW (1957) Kinetic studies of pigment synthesis by non-sulphur purple bacteria. J Cell Comp Physiol 49: 25–68

    Article  CAS  Google Scholar 

  • Connelly JL, Jones OTG, Saunders VA and Yates DW (1973) Kinetic and thermodynamic properties of membrane-bound cytochromes of aerobically and photosynthetically grown R. spheroides. Biochim Biophys Acta 292: 644–653

    CAS  PubMed  Google Scholar 

  • Cotton NPJ, Clark AJ and Jackson JB (1983) Interaction between the respiratory and photosynthetic electron transport chains of intact cells of Rhodopseudomonas capsulata mediated by membrane potential. Eur J Biochem 130: 581–587

    Article  CAS  PubMed  Google Scholar 

  • Culbert-Runquist JA, Hadsell RM and Loach PA (1973) Dependency on environmental redox potential of photophosphorylation in Rhodopseudomonas spheroides. Biochemistry. 12: 3508–3514

    Article  CAS  PubMed  Google Scholar 

  • Daldal F, Cheng S, Applebaum J, Davidson E and Prince RC (1986) Cytochrome c2 is not essential for phototrophic growth of Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 83: 2012–2016

    CAS  Google Scholar 

  • Deisenhofer J and Michel H (1989) The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J 8: 2149–2170

    CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318: 19–26

    Article  Google Scholar 

  • Donohue TJ, McEwan AG, Van Doren S, Crofts AR and Kaplan S (1988) Phenotypic and genetic characterization of cytochrome c2 deficient mutants of Rhodobacter sphaeroides. Biochemistry 27: 1918–1925

    Article  CAS  PubMed  Google Scholar 

  • Dracheva SM, Drachev LA, Konstantinov AA, Semenov AY, Skulachev VP, Arutjunjan AM, Shuvalov VA and Zaberezhnaya SM (1988) Electrogenic steps in the redox reactions catalysed by photosynthetic reaction-centre complex from Rhodopseudomonas viridis. Eur J Biochem 1871: 253–264

    Google Scholar 

  • Drews G (1991) Regulated Development of the Photosynthetic Apparatus in Anoxygenic Bacteria. In: Cell Culture and Somatic Cell Genetics of Plants, Vol 7B, pp 113–148. Academic Press, New York

    Google Scholar 

  • Drews G and Oelze J (1981) Organization and differentiation of membranes of phototrophic bacteria. Adv Microbiol Physiol 22: 1–97

    CAS  Google Scholar 

  • Dutton PL (1986) Energy Transduction in Anoxygenic Photosynthesis. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, New series, Vol 19, pp 197–237. Springer Verlag, Berlin

    Google Scholar 

  • Dutton PL and Jackson JB (1972) Thermodynamic and kinetic characterization of electron transfer components in situ in Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. Eur J Biochem 30: 495–510

    Article  CAS  PubMed  Google Scholar 

  • Dutton PL, Petty KM, Bonner HS and Morse SD (1975) Cytochrome c2 and reaction center of Rps. sphaeroides Ga membranes. Extinction coefficients, content, half-reduction potentials, kinetics and electric field alterations. Biochim Biophys Acta 387: 536–556

    CAS  PubMed  Google Scholar 

  • Engelhardt H, Baumeister W and Saxton O (1983) Electron microscopy of photosynthetic membranes containing bacteriochlorophyll b. Arch Microbiol 35: 169–175

    Google Scholar 

  • Farchaus JW, Barz WP, Grünberg H and Oesterhelt D (1992) Studies on the expression of the pufX polypeptide and its requirement for photoheterotrophic growth in Rhodobacter sphaeroides. EMBO J 11: 2779–2788

    CAS  PubMed  Google Scholar 

  • Fenoll C and Ramirez JM (1984) Simultaneous presence of two terminal oxidases in the respiratory system of dark aerobically grown Rhodospirillum rubrum. Arch Microbiol 137: 42–46

    Article  CAS  Google Scholar 

  • Ferguson ST, Jackson JB and McEwan AG (1987) Anaerobic respiration in the Rhodospirillaceae: Characterisation of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol Rev 46: 117–143

    CAS  Google Scholar 

  • Fernández-Valasco J and Crofts AR (1991) Complex or supercomplexes: Inhibitor titration show that electron transfer in chromatophores from Rhodobacter sphaeroides involves a dimeric UQH2: cytochrome c2 oxidase, and is delocalized. Biochem Soc Trans, 19: 588–593

    Google Scholar 

  • Fitch J, Cannac V, Meyer TE, Cusanovich MA, Tollin G, Van Beeumen J, Rott MA and Donohue TJ (1989) Expression of a cytochrome c2 isozyme restores photosynthetic growth of Rhodobacter sphaeroides mutants lacking the wild-type cytochrome c2 gene. Arch Biochem Biophys 271: 502–507

    Article  CAS  PubMed  Google Scholar 

  • Garcia AF, Venturoli G, Gaďon N, Fernández-Velasco JG, Melandri BA and Drews G (1987) The adaptation of the electron transfer chain of Rhodopseudomonas capsulata to different light intensities. Biochim Biophys Acta 890: 335–345

    CAS  Google Scholar 

  • Garcia D, Richaud P and Verméglio A (1993) The photoinduced cyclic electron transfer in whole cells of Rhodopseudomonas viridis. Biochim Biophys Acta 1144: 195–301

    Google Scholar 

  • Harashima K, Shiba T and Murata N (1989) Aerobic Photosynthetic Bacteria. Springer Verlag, Tokyo

    Google Scholar 

  • Holuigue L, Lucero HA and Vallejos RH (1985) Proteins phosphorylation in the photosynthetic bacterium Rhodospirillum rubrum. FEBS Lett 181: 103–108

    Article  CAS  Google Scholar 

  • Holmes NG and Allen JF (1988) Proteins phosphorylation in chromatophores from Rhodospirillum rubrum. Biochim Biophys Acta 935: 72–78

    CAS  Google Scholar 

  • Holmes NG, Sanders CE and Allen JF (1986) Membrane protein phosphorylation in the purple photosynthetic bacterium Rhodopseudomonas sphaeroides. Biochem Soc Trans 14: 67–68

    CAS  Google Scholar 

  • Hunter CN, Pennoyer JD, Sturgis JN, Farrely D and Niederman RA (1988) Oligomerization states and associations of light-harvesting pigment-protein complexes of Rhodobacter sphaeroides as analysed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry 27: 3459–3467

    CAS  Google Scholar 

  • Jackson JB (1988) Bacterial photosynthesis. In: Anthony C (ed) Bacterial Energy Transduction, pp 317–375. Academic Press, London

    Google Scholar 

  • Jenney FE and Daldal F (1993) A novel membrane-associated c-type cytochrome, Cytcy, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBO J 12: 1283–1292

    CAS  PubMed  Google Scholar 

  • Joliot P, Verméglio A and Joliot A (1989) Evidence for supercomplexes between reaction centers, cytochrome c2 and cytochrome bc1 complex in Rhodobacter sphaeroides whole cells. Biochim Biophys Acta 975: 336–345

    CAS  Google Scholar 

  • Joliot P, Verméglio A and Joliot A (1990) Electron transfer between primary and secondary donors in Rhodospirillum rubrum: Evidence for a dimeric association of reaction centers. Biochemistry 29: 4355–4361

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Verméglio A and Joliot A (1993) Supramolecular membrane protein assemblies in photosynthesis and respiration. Biochim Biophys Acta 1141: 151–174

    CAS  Google Scholar 

  • Jones MR, McEwan AG and Jackson JB (1990) The role of c-type cytochromes in the photosynthetic electron pathway of Rhodobacter capsulatus. Biochim Biophys Acta 109: 59–66

    Google Scholar 

  • Junge W and Jackson JB (1982) The development of electrochemical potential gradient across photosynthetic membranes. In: Govindjee (ed) Photosynthesis, Vol 1, pp 589–646. Academic Press, New York

    Google Scholar 

  • Kaufmann N, Reidl H, Golecki JR, Garcia AF and Drews G (1982) Differentiation of the membrane system in cells of Rhodopseudomonas capsulata after transition from the chemotrophic to phototrophic growth conditions. Arch Microbiol 131: 313–322

    Article  CAS  Google Scholar 

  • Kiley PJ and Kaplan S (1988) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev 52: 50–69

    CAS  PubMed  Google Scholar 

  • Kiley PJ, Varga A and Kaplan S (1988) Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides. J Bacteriol 170: 1103–1115

    CAS  PubMed  Google Scholar 

  • King GF, Richardson DJ, Jackson JB and Ferguson SJ (1987) Dimethylsulfoxide and trimethylamine-N-oxide as bacterial electron transport acceptors: use of nuclear magnetic resonance to assay and characterise the reductase system in Rhodobacter capsulatus. Arch Microbiol 149: 47–51

    Article  CAS  Google Scholar 

  • Klemme JH, Chyla, I and Preuss M (1980) Dissimilatory nitrate reduction by strains of the facultative phototrophic bacterium Rhodopseudomonas palustris. FEMS Microbiol Lett 9: 137–140

    Article  CAS  Google Scholar 

  • Knaff DB and Kämpf C (1987) Substrate Oxidation and NAD Reduction by Phototrophic Bacteria. In: Amesz J (ed) Photosynthesis, New Comprehensive Biochemistry, Vol 15, pp 199–211. Elsevier, Amsterdam, New York, Oxford

    Google Scholar 

  • Lavergne J, Joliot P and Verméglio A (1989) Partial equilibration of photosynthetic electron carriers under weak illumination: a theoretical and experimental study. Biochim Biophys Acta 975: 346–354

    CAS  Google Scholar 

  • Laußermair E and Oesterhelt D (1992) A system for site-specific mutagenesis of the photosynthetic reaction center in Rhodopseudomonas viridis. EMBO J 11: 777–783

    PubMed  Google Scholar 

  • Lilburn TG, Haith CE, Prince RC and Beatty JT (1992) Pleiotropic effects of pufX gene deletion on the structure and function of the photosynthetic apparatus of Rhodobacter capsulatus. Biochim Biophys Acta 1100: 160–170

    CAS  PubMed  Google Scholar 

  • Madigan MT (1988) Microbiology, Physiology, and Ecology of phototrophic Bacteria. In: Zehnder AJB (ed) pp 39–111. John Wiley and Sons, New York

    Google Scholar 

  • Matsuura K, Mori M and Satoh T (1988) Heterogeneous pools of cytochrome c2 in photodenitrifying cells of Rhodobacter sphaeroides forma sp. denitrificans. J Biochem 104: 1016–1020

    CAS  PubMed  Google Scholar 

  • McEwan AG, George CL, Ferguson SJ and Jackson JB (1982) A nitrate reductase activity in Rhodopseudomonas capsulata linked to electron transfer and generation of a membrane potential. FEBS Lett 150: 277–280

    Article  CAS  Google Scholar 

  • McEwan AG, Jackson JB and Ferguson SJ (1984a) Rationalization of properties of nitrate reductases in Rhodopseudomonas capsulata. Arch Microbiol 137: 344–349

    Article  CAS  Google Scholar 

  • McEwan AG, Cotton NPJ, Ferguson SJ and Jackson JB (1984b) The inhibition of nitrate reduction by light in Rhodopseudomonas capsulata is mediated by the membrane potential but the inhibition by oxygen is not. Adv Photosynth Res 2, 449–452

    CAS  Google Scholar 

  • McEwan AG, Cotton NPJ, Ferguson SJ and Jackson JB (1985) The role of auxiliary oxidants in the maintenance of balanced redox poise for photosynthesis in bacteria. Biochim Biophys Acta 810: 140–147

    CAS  Google Scholar 

  • Meckenstock RU, Krusche K, Brunisholz RA and Zuber H (1992) The light-harvesting core-complex and the B820-subunit from Rhodopseudomonas marina. Part II. Electron microscopic characterisation. FEBS Lett 311: 135–138

    CAS  PubMed  Google Scholar 

  • Meyer R, Snozzi M and Bachofen R (1981) Freeze fracture studies of reaction centers from Rhodospirillum rubrum in chromatophores and liposomes. Arch Microbiol 130: 125–128

    Article  CAS  Google Scholar 

  • Meyer TE (1991) Evolution of cytochromes and photosynthesis. Biochim Biophys Acta 1058: 31–34

    CAS  PubMed  Google Scholar 

  • Michalski WP and Nicholas DJD (1984) The adaptation of Rhodopseudomonas sphaeroides forma sp. denitrificans for growth under denitrifying conditions. J Gen Microbiol 130: 155–165

    CAS  Google Scholar 

  • Miller KR (1982) Three-dimensional structure of a photosynthetic membrane. Nature 300: 53–55

    Article  CAS  Google Scholar 

  • Nakamura H (1937) Über die photosynthese bei der schelfreien purpurbakterie Rhodobazillus palustris. Beiträge zur stoffwechselphysiologie der purpurbakterie. Acta Phytochim. 9: 189–234

    CAS  Google Scholar 

  • Overfield RE, Wraight CA and DeVault D (1979) Microsecond photooxidation kinetics of cytochrome c2 from Rhodopseudomonas sphaeroides: in vivo and solution studies. FEBS Lett 105: 137–142

    Article  CAS  PubMed  Google Scholar 

  • Prince RC (1990) Bacterial photosynthesis: from photons to the In: Krulwich TA (ed) Bacterial Energetics, The Bacteria, Vol 12, pp 111–150. Academic Press, New York

    Google Scholar 

  • Prince RC, Davidson E, Haith CE and Daldal F (1986) Photosynthetic electron transfer in the absence of cytochrome c2 in Rhodopseudomonas sphaeroides: Cytochrome c2 is not essential for electron flow from the cytochrome c1 complex to the photochemical reaction center. Biochemistry 25: 5208–5214

    Article  CAS  Google Scholar 

  • Ramirez J and Smith L (1968) Synthesis of a denosine triphosphate in intact cells of Rhodospirillum rubrum and Rhodopseudomonas sphaeroides on oxygenation or illumination. Biochim Biophys Acta 153: 466–475

    CAS  PubMed  Google Scholar 

  • Reidl H, Golecki JR, and Drews G (1985) Composition and activity of the photosynthetic system of Rhodobacter capsulatus. Biochim Biophys Acta 808: 328–333

    CAS  Google Scholar 

  • Richardson DJ, McEwan AG, Jackson JB and Ferguson SJ (1989) Electron transport pathways to nitrous oxide in Rhodobacter species. Eur J Biochem 185: 659–669

    Article  CAS  PubMed  Google Scholar 

  • Richaud P, Marrs BL and Verméglio A (1986) Two modes of interaction between photosynthetic and respiratory electron chains in whole cells of Rhodopseudomonas capsulata. Biochim Biophys Acta 850: 256–263

    CAS  Google Scholar 

  • Rott MA, Fitch J, Meyer TE and Donohue TJ (1992) Regulation of a cytochrome c2 isoform in wild-type and cytochrome c2 mutant strains of Rhodobacter sphaeroides. Arch Biochem Biophys 292: 576–582

    Article  CAS  PubMed  Google Scholar 

  • Sabaty M, Gans P and Verméglio A (1993) Inhibition of nitrate reduction by light and oxygen in Rhodobacter sphaeroides forma sp. denitrificans. Arch Microbiol 159: 153–159

    Article  CAS  Google Scholar 

  • Sabaty M, Gagnon J and Verméglio A (1994a) Induction by nitrate of cytoplasmic and periplasmic proteins in the photodenitrifier Rhodobacter sphaeroides forma sp. denitrificans in anaerobic and aerobic conditions. Arch Microbiol 162: 335–343

    CAS  PubMed  Google Scholar 

  • Sabaty M, Jaffé J, Olive J and Verméglio A (1994b) Organization of electron transfer components in Rhodobacter sphaeroides forma sp. denitrificans. Biochim Biophys Acta 1187: 313–323

    CAS  Google Scholar 

  • Satoh T (1977) Light-activated,-inhibited and-independent denitrification by a denitrifying phototrophic bacterium. Arch Microbiol 115: 293–298

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Hoshino Y and Kitamura H (1976) Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. Arch Microbiol 108: 265–269

    Article  CAS  PubMed  Google Scholar 

  • Sawada E and Satoh T (1980) Periplasmic location of dissimilatory nitrate and nitrite reductases in a denitrifying phototrophic bacterium, Rhodopseudomonas sphaeroides forma sp. denitrificans. Plant Cell Physiol 21: 205–210

    CAS  Google Scholar 

  • Shioi Y, Doi M, Arata H and Takamiya K (1988) A denitrifying activity in an aerobic photosynthetic bacterium Erythrobacter sp. strain OCh 114. Plant Cell Physiol 29: 861–865

    CAS  Google Scholar 

  • Shopes RJ, Levine LMA, Holten D and Wraight CA (1987) Kinetics of the bound cytochromes in reaction centers from Rhodopseudomonas viridis. Photosynth Res 12: 165–180

    Article  CAS  Google Scholar 

  • Snozzi M and Crofts AR (1985) Kinetics of the c-cytochromes in chromatophores from Rhodopseudomonas sphaeroides as a function of the concentration of cytochrome c2 Influence of this concentration on the oscillation of the secondary acceptor of the reaction center QB. Biochim Biophys Acta 809: 260–270

    CAS  PubMed  Google Scholar 

  • Sprague SC and Varga AR (1986) Membrane architecture of anoxygenic photosynthetic bacteria. In: Staehelin LA and Arntzen (eds) Encycl. Plant Physiol, Vol 19, pp 303–319. Springer Verlag, Berlin, Heidelberg and New York

    Google Scholar 

  • Stackebrandt E, Murray RGE and Trüper HG (1988) Proteo-bacteria classis nov., a name for the phylogenetic taxon that includes the ‘Purple bacteria and their relatives’. Int J Syst Bacteriol 38: 321–325

    Google Scholar 

  • Takamiya K, Arata H, Shioi Y and Doi M (1988) Restoration of the optimal redox state for the photosynthetic electron transfer system by auxiliary oxidants in an aerobic photosynthetic bacterium Erythrobacter sp. OCh 114. Biochim Biophys Acta 935: 26–33

    CAS  Google Scholar 

  • Trüper HG and Pfennig N (1981) Characterization and identification of the anoxygenic phototrophic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG (eds) The Prokaryotes, a Handbook on Habitats, Isolation and Identification of Bacteria, pp 299–312. Springer Verlag, Berlin, Heidelberg and New York

    Google Scholar 

  • Turner AM and Mann NH (1986) Protein phosphorylation in Rhodomicrobium vannielli. J Gen Microbiol 132: 3433–3440

    CAS  Google Scholar 

  • Urata K, Shimada K and Satoh T (1982) Periplasmic location of nitrous oxide reductase in a photodenitifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. Plant Cell Physiol 23: 1121–1124

    CAS  Google Scholar 

  • Van der Berg WH, Bonner WD and Dutton PL (1983) Redox potential of photophosphorylation and electron transfer in continuous illumination of Rhodopseudomonas sphaeroides chromatophores. Arch Biochem Biophys 222: 299–309

    PubMed  Google Scholar 

  • Van Grondelle R, Duysens LNM and Van der Wal HN (1976) Function of three cytochromes in photosynthesis of whole cells of Rhodospirillum rubrum as studied by flash spectroscopy. Biochim Biophys Acta 449: 169–187

    PubMed  Google Scholar 

  • Verméglio A and Carrier JM (1984) Photoinhibition by flash and continuous light of oxygen uptake by intact photosynthetic bacteria. Biochim Biophys Acta 764: 233–238

    Google Scholar 

  • Verméglio A, Joliot P and Joliot A (1993) The rate of cytochrome c2 photooxidation reflects the subcellular distribution of reaction centers in Rhodobacter sphaeroides Ga cells. Biochim Biophys Acta 1183: 352–360

    Google Scholar 

  • Vos M, Van Dorssen RJ, Amesz J, Van Grondelle R and Hunter CN (1988) The organization of the photosynthetic apparatus of Rhodobacter sphaeroides: studies of antenna mutants using singlet-singlet quenching. Biochim Biophys Acta 933: 132–140

    CAS  Google Scholar 

  • Vignais PM, Colbeau A, Willison JC and Jouanneau Y (1985) Hydrogenase, nitrogenase and hydrogen metabolism in the photosynthetic bacteria. Adv Microb Physiol 26: 155–234

    CAS  PubMed  Google Scholar 

  • Williams JC, Steiner LA and Feher G (1986) Primary structure of the reaction center from Rhodopseudomonas sphaeroides. Proteins 1: 312–325

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial Evolution. Microbiol Rev 51: 221–271

    CAS  PubMed  Google Scholar 

  • Wollman FA and Bulté L (1989) Towards an understanding of the physiological role of states transitions. In: Hall DO and Grassi G (eds) Photosynthetic Processes for Energy and Chemicals, pp 198–207. Elsevier, Amsterdam

    Google Scholar 

  • Wraight CA, Cogdell RJ and Chance B (1978) Ion transport and electrochemical gradients in photosynthetic bacteria. In: Clayton RK and Sistrom RW (eds) The Photosynthetic Bacteria, pp 471–502. Plenum Press, New York and London

    Google Scholar 

  • Youvan DC, Bylina EJ, Alberti M, Begusch H and Hearst JE (1984) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction center, B870 antenna and flanking sequences from Rhodopseudomonas capsulata. Cell 37: 949–957

    Article  CAS  PubMed  Google Scholar 

  • Zannoni D and Baccarini-Melandri A (1980) Respiratory electron flow in facultative photosynthetic bacteria. In: Knowles CJ (ed) The Diversity of Bacterial Respiratory Systems, Vol 2, pp 183–202. CRC Press, Cleveland

    Google Scholar 

  • Zannoni D and Moore AL (1990) Measurement of the redox state of the ubiquinone pool in Rhodobacter capsulatus membrane fragments. FEBS Lett 271: 123–127

    Article  CAS  PubMed  Google Scholar 

  • Zannoni D, Jasper P and Marrs BL (1978) Light-induced absorption changes in intact cells of Rhodopseudomonas sphaeroides. Evidence for interaction between photosynthetic and respiratory electron transfer chains. Biochim Biophys Acta, 191: 625–631

    CAS  Google Scholar 

  • Zannoni D, Venturoli G and Daldal F (1992) The role of membrane bound cytochromes of b-and c-type in the electron transport chain of Rhodobacter capsulatus. Arch Microbiol 157: 367–374

    Article  CAS  Google Scholar 

  • Zhu YS and Hearst J (1986) Regulation of expression of genes for light-harvesting antenna proteins LHI and LHII; reaction centers polypeptides RC-L, RC-M, and RC-H; and enzymes of bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus by light and oxygen. Proc Natl Acad Sci USA 83: 7613–7616

    CAS  PubMed  Google Scholar 

  • Zhu YS and Kaplan S (1985) Effects of light, oxygen, and substrates on steady-state levels of mRNA coding for ribulose 1,5-bisphosphate carboxylase and light-harvesting and reaction center polypeptides in Rhodopseudomonas sphaeroides. J Bacteriol 162: 925–932

    CAS  PubMed  Google Scholar 

  • Zhu YS, Kiley PJ, Donohue TJ and Kaplan S (1986) Origin of the mRNA stoichiometry of the puf operon in Rhodobacter sphaeroides. J Bacteriol 261: 10366–10374

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Verméglio, A., Joliot, P., Joliot, A. (1995). Organization of Electron Transfer Components and Supercomplexes. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics