Skip to main content

Lipid Metabolism and Release of Cytochrome c from Mitochondria

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 36))

Conclusions

Mitochondria are now appreciated as being important in the control of cell survival and cell death. Most apoptotic signaling processes converge on the mitochondria, which releases cytochrome c, leading to the activation of effector caspases. The response of mitochondria to upstream proapoptotic signals is a critical control point for the regulation of cell death. It certainly involves phospholipids which provide specificity to target proapoptotic proteins to mitochondria and enable them to interact with Bcl-2 members or with other proteins to release cytochrome c. Despite these successes, we are mostly in the dark at the mechanism of how phospholipids regulate such interactions. The challenge in the future will be to explore how phospholipids control such interaction. This implies that more specific interactions between individual lipids and proteins associated with apoptosis have to be established and their molecular base to be identified. Given the importance of phospholipid/protein interactions for the maintenance of mitochondrial hoemostasis, it would be not surprising if they serve as useful targets for drug intervention. For instance anticancer drugs could be designed that prevent such interactions resulting in loss of mitochondrial integrity and ultimately in cell death.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.M., and Cory, S., 1998, The Bcl-2 protein family: arbiters of cell survivals, Science 281: 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  • Alnemri, E.S., 1999, Hidden powers of the mitochondria, Nature Cell Biology 1: E40–42.

    Article  PubMed  CAS  Google Scholar 

  • Antonsson, B., and Martinou, J.C., 2000, The Bcl-2 protein family, Exp. Cell Res. 256: 50–57.

    Article  PubMed  CAS  Google Scholar 

  • Basanez, B., Nechushtan, A., Drozhinin, O., Chanturiya, A., Choe, E., Tutt, S., and Wood, K.A., 1999, Bax, but not Bcl-xL decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations, Proc. Natl. Sci. USA 96: 5492–5497.

    CAS  Google Scholar 

  • Bergmann, S., Shatrov, V., Ratter, F., Schiemann, S., Schulze-Osthoff, K., and Lehmann, V., 1994, Adenosine and homocysteine together enhance TNF-mediated cytotoxicity but do not alter activation of nuclear factor-κB in L929 cells, J. Immunol. 13: 1736–1743.

    Google Scholar 

  • Beyer, K., Klingenberg, M., 1985, ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance, Biochemistry 24: 3821–3826.

    PubMed  CAS  Google Scholar 

  • Beyer, K., and Nuscher, B., 1996, Specific cardiolipin binding interferes with labeling of sulfhydryl residues in the adenosine diphosphate/adenosine triphosphate carrier protein from beef heart mitochondria, Biochemistry 35: 15784–15790.

    Article  PubMed  CAS  Google Scholar 

  • Bradham, C.A., Qian, T., Streetz, K., Trautwein, C., Brenner, D.A., and Lemasters, J.J., 1998, The mitochondrial permeability transition is required for Tumor Necrosis Factor Alpha-mediated apoptosis and cytochrome c release, Molecular and Cellular Biology 18: 6353–6364.

    PubMed  CAS  Google Scholar 

  • Brenner, C., and Kroemer, G., 2000, Mitochondria-the death signal integrators, Science, 289: 1150–1151.

    Article  PubMed  CAS  Google Scholar 

  • Chai, J., Du, C., Wu, J.W., Kyin, S., Wang, X., and Shi, Y., 2000, Structural and biochemical basis of apoptotic activation by Smac/DIABLO, Nature 406: 855–862.

    PubMed  CAS  Google Scholar 

  • Constantini, P., Jacotot, E., Decaudin, D., and Kroemer, G., 2000, Mitochrondrion as a novel target of anticancer chemotherapy, J. of the National Cancer Institute 92: 1042–1053.

    Google Scholar 

  • Cosulich, S.C., Savory, P.J., and Clarke, P.R., 1999, Bcl-2 regulates amplification of caspase activation by cytochrome c, Current Biology 9: 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Cullis, P.R., and de Kruiff, B., 1997, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559: 399–420.

    Google Scholar 

  • Daum, G., 1985, Lipids of mitochondria, Biochim. Biophys. Acta 822: 1–42

    PubMed  CAS  Google Scholar 

  • De Kruijff, B., 1997, Lipids beyond the bilayer, Nature 386: 129–130.

    PubMed  Google Scholar 

  • Demel, R.A., Jordi, W., Lambrechts, H., van Damme, H., Hovius, R. and de Kruijff, B., 1989, Differential interactions of apo-and holocytochrome c with acidic membrane lipids in model systems and the implication for their import into mitochondria, J. Biol. Chem. 264: 3988–3997.

    PubMed  CAS  Google Scholar 

  • Demel, R.A., 1994, Monomolecular layers in the study of biomembranes, in: Subcellular Biochemistry, Volume 23: physicochemical methods in the study of biomembranes, (H. J. Hilderson and G. B. Ralston, eds.) Plenum Press, New York, pp.83–120.

    Google Scholar 

  • Deveraux, Q.L. and Reed, J.,C. 1999, IAP family proteins-suppressors of apoptosis, Genes Dev. 13: 239–252.

    PubMed  CAS  Google Scholar 

  • Dowhan, W., 1997, Molecular basis for membrane phospholipid diversity: Why are there so many lipids?, Annu. Rev. Biochem. 66: 199–232.

    Article  PubMed  CAS  Google Scholar 

  • Du, C., Fang, M., Li, Y., Li, L., and Wang, X., 2000, Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition, Cell 102: 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Fesik, St.W., 2000, Insights into programmed cell death through structural biology, Cell, 103: 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, J.C., Waterhouse, N.J., Juin, P., Evan, G.I., and Green, D.R., 2000, The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant, Nature Cell Biology 2: 156–162.

    PubMed  CAS  Google Scholar 

  • Gray. M.W., Burger, G., and Lang. B.F., 1999, Mitochondrial evolution, Science 283: 1476–1481.

    Article  PubMed  CAS  Google Scholar 

  • Green, D.R., 1998, Apoptotic pathways: The roads to ruin, Cell 34: 695–698.

    Google Scholar 

  • Green, D.R., and Reed, J.C., 1998, Mitochondria and apoptosis, Science 281: 1309–1316.

    PubMed  CAS  Google Scholar 

  • Gross, A., Yin, X.M., Wang, K., Wei, M.C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., and Korsmeyer, S.J., 1999, Caspase cleaved Bid targets mitochondria and is required for cytochrome c release, while Bcl-XL prevents this release but not tumor necrosis factor-R1/Fas death, J. Biol. Chem. 274: 1156–1163.

    PubMed  CAS  Google Scholar 

  • Heimburg, T., Hildebrandt, P., and Marsh, D., 1991, Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy. Correlation between the conformational changes of the protein and the lipid bilayer Biochemistry 30: 9084–9089.

    Article  PubMed  CAS  Google Scholar 

  • Hengartner, M.W., 2000, The biochemistry of apoptosis, Nature 407: 770–767.

    Article  PubMed  CAS  Google Scholar 

  • Hoch, F.L., 1992, Cardiolipins and biomembrane function. Biochim. Biophys. Acta 1113: 71–133.

    PubMed  CAS  Google Scholar 

  • Hoffmann, B., Stöckl, A., Schlame, M., Beyer, K., and Klingenberg, M., 1994, The reconstituted ADP/ATPcarrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants, J. Biol. Chem. 269: 1940–1944.

    PubMed  CAS  Google Scholar 

  • Kent, C., 1995, Eukaryotic phospholipid biosynthesis, Annu. Rev. Biochem. 64: 315–343.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T.H., Zhao, Y., Barber, M.J., Kuharsky, D.K., and Yin, X.M., 2000, Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax, J. Biol. Chem. 275: 39474–39481.

    PubMed  CAS  Google Scholar 

  • Korsmeyer, S.J., Wei, M.C., Saito, M., Weiler, S., Oh, K.J., and Schlesinger, P.H., 2000, Proapoptotic cascade activates Bid, which oligomerizes Bak or Bax into pores that result in the release of cytochrome c, Cell Death and Differentiation 7: 1166–1173.

    Article  PubMed  CAS  Google Scholar 

  • Kozarac, Z., Dhathathreyan, A., Möbius, D., 1988, Adsorption of cytochrome c to phospholipd monolayers studied by reflection spectroscopy, FEBS Lett. 229: 372–376.

    Article  PubMed  CAS  Google Scholar 

  • Krammer, P.M., 2000, CD95’s deadly mission in the immune system, Nature 407: 789–795.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G., and Reed, J.C., 2000, Mitochondrial control of cell death, Nature Medicine 6: 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Kudla, G., Montessuit, S., Eskes, R., Berrier, C., Martinou, J.C., Ghazi, A., and Antonsson, B., 2000, The destabilization of lipid membranes induced by the C-terminal fragment of caspase 8-cleaved Bid is inhibited by the N-terminal fragment, J. Biol. Chem. 275: 22713–22718.

    Article  PubMed  CAS  Google Scholar 

  • Li, K., Li, Y., Shelton, J.M., Richardson, J.A., Spencer, E., Chen, Z.J., Wang, X., and Williams, R.S., 2000, Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis, Cell 101: 389–399.

    PubMed  CAS  Google Scholar 

  • Li, H., Zhu, H., Xu, C.J., and Yuan, J., 1998, Cleavage of Bid by caspase 8 mediates the mitochondrial damage in the fas pathway of apoptosis, Cell 94: 91–501.

    Article  Google Scholar 

  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X., 1997, Cytochrome c and dATP-dependent formation of Apaf-l/caspase-9 complex initiates an apoptotic protease cascade, Cell 91: 479–489.

    Article  PubMed  CAS  Google Scholar 

  • Li, P.F., Dietz, R., and von Harsdorf, R., 1999, P53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2, EMBO J. 18: 66027–6036.

    Google Scholar 

  • Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X., 1998, Bid, a Bcl-2 interacting protein, mediates cythochrome c release from mitochondria in response to activation of cell surface death receptors, Cell 94: 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Loeffler, M., and Kroemer, G., 2000, The mitochondrion in cell death control: certainties and incognita, Exp. Cell Res. 256: 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Lutter, M., Fang, M., Luo, X., Nishijima, M., Xie, X.S., and Wang, X., 2000, Cardiolipin provides specificity for targeting of tBid to mitochondria, Nature Cell Biology 2: 754–756.

    PubMed  CAS  Google Scholar 

  • Margulis, L., 1996, Archaeal-eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life, Proc. Natl. Acad. Sci. USA 93: 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  • Martinou, J.C., Desagher, S., and Antonsson, B., 2000, Cytochrome c release from mitochondria: all or nothing, Nature Cell Biology 2: E41–43.

    Article  PubMed  CAS  Google Scholar 

  • Martinou, J-C., and Green, D.R., 2001, Breaking the mitochondrial barrier, Molecular Cell Biology, 2: 63–67.

    PubMed  CAS  Google Scholar 

  • Mayer, A., Neupert, W., and Lill, R., 1995, Translocation of apocytochrome c across the outer membrane of mitochondria, J. Biol. Chem. 270: 12390–12397

    PubMed  CAS  Google Scholar 

  • Miller, L.K., 1999, An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 9: 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Minn, A.J., Vélez, P., Schendel, S.L., Liang, H., Muchmore, S.W., Fesik, S.W., Fill, M., and Thompson, C.B., 1997, Bcl-xL forms an ion channel in synthetic lipid membranes, Nature 385: 353–357.

    Article  PubMed  CAS  Google Scholar 

  • Mootha, V.K., Wie, M.C., Buttle, K.F., Scorrano, L., Panoutsakopoulou, V., Mannellla, C.A., and Korsmeyer, S.J., 2001, A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c, EMBO J. 20: 661–671.

    Article  PubMed  CAS  Google Scholar 

  • Muchmore, S.W., Sattler, M., Liang, H., Meadows, R.P., Harlan, J.E., Yoon, H.S., Nettesheim, D., Chang, B.S., Thompson, C.B., Wong, S.L., Ng, S.C., and Fesik, S.W., 1996, X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death, Nature 381: 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Neupert, W., 1997, Protein import into mitochondria, Annu. Rev. Biochem. 66: 863–917.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, K., Imai; H., Koumura; T., Kobayashi, T., and Nakagawa, Y., 2000, Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis, Biochem. J. 351: 183–193.

    PubMed  CAS  Google Scholar 

  • Poyton, R.O., McEwen, J.E., 1996, Crosstalk between nuclear and mitochondrial genomes, Annu. Rev. Biochem. 65: 563–607.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, P.J., and Dawson, R.M.C., 1969, Interactions of cytochrome c and [14C] carboxylated cytochrome c with monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin, Biochem. J. 115: 65–75.

    PubMed  CAS  Google Scholar 

  • Reed, J.C., 1997, Cytochrome c: Can’t live with it — can’t live without it, Cell 91: 559–562.

    Article  PubMed  CAS  Google Scholar 

  • Rytömaa, M., and Kinnunen, P.K.J., 1995, Reversibility of the binding of cytochrome c to liposomes: implications for lipid-protein interactions, J. Biol. Chem. 270: 3197–3202.

    PubMed  Google Scholar 

  • Saito, M., Korsmeyer, S.J., and Schlesinger, P.H., 2000, BAX-dependent transport of cytochrome c reconstituted in pure liposomes, Nature Cell Biology 2: 553–555.

    PubMed  CAS  Google Scholar 

  • Scaffidi, C., Fulda, S., Scrinivasan, A., Friesen, C., Li, F., Tomaselli, K.J., Debatin, K.M., Krammer, P.H., and Peter, M.E., 1998, Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17: 1675–1687.

    Article  PubMed  CAS  Google Scholar 

  • Schendel, S.L. Azimov, R., Pawlowski, K., Godzik, A., Kagan, B.L., and Reed, J.C., 1999, Ion channel activity of the BH3 only Bcl-2 family member, Bid, J. Biol. Chem. 274: 21932–21936.

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Osthoff, K., Beyaer, R., Vandevoorde, V., Haegeman, G., and Fiers, W., 1993, Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene inductive effects of TNF, EMBO J. 12: 3095.

    PubMed  CAS  Google Scholar 

  • Shidoji, Y., Hayashi, K., Komura, S., Ohishi, N., and Yagi, K., 1999, Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation, Biochem. Biophys. Res. Commun. 264: 343–347.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S., Narita, M., and Tsujimoto, Y., 1999, Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC, Nature 399: 483–487.

    PubMed  CAS  Google Scholar 

  • Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D.R., Aebersold, R., Siderovski, D.P., Penninger, J.M., and Kroemer, G., 1999a, Molecular characterization of mitochondrial apaptosis-inducing factor, Nature 397: 441–446.

    PubMed  CAS  Google Scholar 

  • Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost, M.C., Alzari, P.M. and Kroemer, G., 1999b Mitochondrial release of caspase-2 and-9 during the apoptotic process, J. Exp. Med. 189: 381–393.

    Article  PubMed  CAS  Google Scholar 

  • Thomberry, N.A., and Lazebnik, Y., 1998, Caspases: enemies within, Science 281: 1312–1316.

    Google Scholar 

  • Tudor, G., Aguilera, A., Halverson, D.O., Laing, N.D., and Sausville, E.A., 2000, Susceptibility to drug-induced apoptosis correlates with differential modulation of Bad, Bcl-2 and Bcl-xL protein levels, Cell Death and Differentiation 7: 574–586.

    Article  PubMed  CAS  Google Scholar 

  • Ushmorov, A., Ratter, F., Lehmann, V., Dröge, W., Schirrmacher, V., and Umansky, V., 1999, Nitric oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome c release, Blood 93: 2342–2352.

    PubMed  CAS  Google Scholar 

  • Vander Heiden, M.G., Chandel, N.S., Williamson, E.K., Schumacker, P.T., and Thompson, C.B., 1997, Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria, Cell 91: 627–637

    Google Scholar 

  • Vander Heiden, M.G., and Thompson, C.B., 1999, Bcl-2 proteins: Regulators of apoptosis or of mitochrondrial homeostasis?, Nature Cell Biology 1: E209–216.

    Google Scholar 

  • Vieira, H.L.A., Haouzi, D., Hamel, C.E., Jacotot, E., Belzacq, A.S., Brenner, C., and Kroemer, G., 2000, Permeabilization of the mitochrondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator, Cell Death and Differentiation 7: 1146–1154.

    Article  PubMed  CAS  Google Scholar 

  • Vik, S.B., Georgevich, G., and Capaldi, R.A., 1981, Diphosphatidylglycerol is required for optimal activity of beef heart cytochrome c oxidase, Proc. Natl. Acad. Sci. USA 78: 1456–1460.

    PubMed  CAS  Google Scholar 

  • Voelker, D.R., 2000, Interorganelle transport of aminoglycerophospholipids, Biochim. et Biophys. Acta 1486: 97–107.

    CAS  Google Scholar 

  • Von Ahsen, O., Waterhouse, N.J., Kuwana, T., Newmeyer, D.D., and Green, D.R., 2000, The harmless release of cytochrome c, Cell Death and Differentiation 7: 1192–1199.

    Google Scholar 

  • Wang, K.., Yin, X.M., Chao, D.T., Milliman, C.L., and Korsmeyer, S.J., 1996, Bid: a novel BH3 domain-only death agonist, Genes dev. 10: 2859–2869.

    PubMed  CAS  Google Scholar 

  • Zamzami, N., Marchetti, Ph., Castedo, M., Decaudin, D., Macho, A., Hirsch, T., Susin, S.A., Petit, P.X., Mignotte, B., and Kroemer, G., 1995, Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death, J. Exp. Med. 182: 367–377.

    Article  PubMed  CAS  Google Scholar 

  • Zhai, D., Huang, X, Han, X., and Yang, F., 2000, Characterization of tBid-induced cytochrome c release from mitochondria and liposomes, FEBS Lett. 472: 293–296.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lehmann, V., Shatrov, V. (2004). Lipid Metabolism and Release of Cytochrome c from Mitochondria. In: Quinn, P.J., Kagan, V.E. (eds) Phospholipid Metabolism in Apoptosis. Subcellular Biochemistry, vol 36. Springer, Boston, MA. https://doi.org/10.1007/0-306-47931-1_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47931-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46782-0

  • Online ISBN: 978-0-306-47931-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics