Skip to main content

New Perspectives on Crack and Fault Dynamics

  • Conference paper
Mechanics for a New Mellennium

Abstract

Recent observations on the dynamics of crack and fault rupture are described, together with related theory and simulations in the frame-work of continuum elastodynamics. Topics include configurational instabilities of tensile crack fronts (crack front waves, disordering, side-branching), the connection between frictional slip laws and modes of rupture propagation in earth faulting, especially conditions for formation of self-healing slip pulses, and the rich faulting and cracking phenomena that result along dissimilar material interfaces due to coupling between slippage and normal stress alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perrin, G., J. R. Rice, and G. Zheng. 1995. Self-healing slip pulse on a frictional surface. Journal of the Mechanics and Physics of Solids 43, 1461–1495.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Geubelle, P., and J. R. Rice. 1995. A spectral method for 3D elastodynamic fracture problems. Journal of the Mechanics and Physics of Solids 43, 1791–1824.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Breitenfeld, M. S., and P.H. Geubelle. 1998. Numerical analysis of dynamic debonding under 2D in-plane and 3D loading. International Journal of Fracture 93, 13–38.

    Article  Google Scholar 

  4. Rice, J. R., Y. Ben-Zion, and K. S. Kim. 1994. Three-dimensional perturbation solution for a dynamic planar crack moving unsteadily in a model elastic solid. Journal of the Mechanics and Physics of Solids 42, 813–843.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Perrin, G., and J. R. Rice. 1994. Disordering of a dynamic planar crack front in a model elastic medium of randomly variable toughness. Journal of the Mechanics and Physics of Solids 42, 1047–1064.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Willis, J. R., and A. B. Movchan. 1995. Dynamic weight functions for a moving crack—I. Mode I loading. Journal of the Mechanics and Physics of Solids 43, 319–341.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Ramanathan, S., and D. Fisher. 1997. Dynamics and instabilities of planar tensile cracks in heterogeneous media. Physical Review Letters 79, 877–880.

    Article  ADS  Google Scholar 

  8. Morrissey, J. W., and J. R. Rice. 1996. 3D elastodynamics of cracking through heterogeneous solids: Crack front waves and growth of fluctuations (abstract). EOS Transactions of the American Geophysical Union 77, F485.

    Google Scholar 

  9. Morrissey, J. W., and J. R. Rice. 1998. Crack front waves. Journal of the Mechanics and Physics of Solids 46, 467–487.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Kostrov, B. V. 1966. Unsteady propagation of longitudinal shear cracks. Journal of Applied Mathematics and Mechanics 30, 1241–1248 (in Russian).

    Article  Google Scholar 

  11. Eshelby, J. D. 1969. The elastic field of a crack extending non-uniformly under general anti-plane loading. Journal of the Mechanics and Physics of Solids 17, 177–199.

    Article  MATH  ADS  Google Scholar 

  12. Freund, L. B. 1972. Crack propagation in an elastic solid subject to general loading—I, Constant rate of extension, II, Non-uniform rate of extension. Journal of the Mechanics and Physics of Solids 20, 129–152.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Fossum, A. F., and L. B. Freund. 1975. Non-uniformly moving shear crack model of a shallow focus earthquake mechanism. Journal of Geophysical Research 80, 3343–3347.

    Article  ADS  Google Scholar 

  14. Rice, J. R. 1980. The mechanics of earthquake rupture. In Physics of the Earth’s Interior, Proceedings of the International School of Physics ‘Enrico Fermi’ (A. M. Dziewonski and E. Boschi, eds.). Italian Physical Society and North-Holland, 555–649.

    Google Scholar 

  15. Morrissey, J. W., and J. R. Rice. 2000. Perturbative simulations of crack front wave. Journal of the Mechanics and Physics of Solids 48, 1229–1251.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Ravi-Chandar, K., and W. G. Knauss. 1984. An experimental investigation into dynamic fracture—I, Crack initiation and crack arrest, II, Microstructural aspects, III, Steady state crack propagation and crack branching, IV, On the interaction of stress waves with propagating cracks. International Journal of Fracture 25, 247–262; 26, 65–80, 141–154, 189–200.

    Article  Google Scholar 

  17. Sharon, E., S. P. Gross, and J. Fineberg. 1995. Local crack branching as a mechanism for instability in dynamic fracture. Physical Review Letters 74, 5096–5099. Also, Sharon, E., and J. Fineberg. 1996. Microbranching instability and the dynamic fracture of brittle materials. Physical Review B 54, 7128–7139.

    Article  ADS  Google Scholar 

  18. Broberg, K.B. 1999. Cracks and Fracture. San Diego, Calif.: Academic Press, 752 pp.

    Google Scholar 

  19. Washabaugh, P. D., and W. G. Knauss. 1994. A reconciliation of dynamic crack velocity and Rayleigh wave speed in isotropic brittle solids. International Journal of Fracture 65, 97–114.

    Google Scholar 

  20. Archuletta, R. J. 1984. A faulting model for the 1979 Imperial Valley earthquake. Journal of Geophysical Research 89, 4559–4585.

    Article  ADS  Google Scholar 

  21. Beroza, G. C., and P. Spudich. 1988. Linearized inversion for fault rupture behavior: Application to the 1984 Morgan Hill, California, earthquake. Journal of Geophysical Research 93, 6275–6296.

    Article  ADS  Google Scholar 

  22. Ravi-Chandar, K., and B. Yang. 1997. On the role of microcracks in the dynamic fracture of brittle materials. Journal of the Mechanics and Physics of Solids 45, 535–563.

    Article  ADS  Google Scholar 

  23. Yoffe, E. H. 1951. The moving Griffith crack. Philosophical Magazine 42, 739–750.

    MathSciNet  MATH  Google Scholar 

  24. Eshelby, J. D. 1970. Energy relations and the energy-momentum tensor in continuum mechanics. In Inelastic Behavior of Solids (M. F. Kanninen, W. F. Adler, A. R. Rosenfield, and R. I. Jaffe, eds.). New York: McGraw-Hill, 77–115.

    Google Scholar 

  25. Adda-Bedia, M., and E. Sharon. 2000. Private communication.

    Google Scholar 

  26. Abraham, F. F., D. Brodbeck, R. A. Rafey, and W. E. Rudge. 1994. Instability dynamics of fracture: A computer simulation investigation. Physical Review Letters 73, 272–275.

    Article  ADS  Google Scholar 

  27. Johnson, E. 1992. Process region changes for rapidly propagating cracks. International Journal of Fracture 55, 47–63.

    Article  ADS  Google Scholar 

  28. Xu, X.-P., and A. Needleman. 1994. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 42, 1397–1434.

    Article  MATH  ADS  Google Scholar 

  29. Xu, X.-P., A. Needleman, and F. F. Abraham. 1997. Effect of inhomogeneities on dynamic crack growth in an elastic solid. Modeling and Simulation in Materials Science and Engineering 5, 489–516.

    Article  ADS  Google Scholar 

  30. Falk, M. L., A. Needleman, and J. R. Rice. 2001. A critical evaluation of dynamic fracture simulations using cohesive surfaces. Submitted to 5th European Mechanics of Materials Conference (Delft, 5–9 March 2001).

    Google Scholar 

  31. Camacho, G. T., and M. Ortiz. 1996. Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures 33, 2899–2938.

    Article  MATH  Google Scholar 

  32. Gao, H. 1996. A theory of local limiting speed in dynamic fracture. Journal of the Mechanics and Physics of Solids 44, 1453–1474.

    Article  ADS  Google Scholar 

  33. Andrews, D. J. 1976. Rupture velocity of plane strain shear cracks. Journal of Geophysical Research 81, 5679–5687.

    Article  ADS  Google Scholar 

  34. Burridge, R., G. Conn, and L. B. Freund. 1979. The stability of a rapid mode II shear crack with finite cohesive traction. Journal of Geophysical Research 84, 2210–2222.

    Article  ADS  Google Scholar 

  35. Rosakis, A. J., O. Samudrala, and D. Coker. 1999. Cracks faster than the shear wave speed. Science 284, 1337–1340.

    Article  ADS  Google Scholar 

  36. Broberg, K. B. 1987. On crack paths. Engineering Fracture Mechanics 28, 663–679.

    Article  Google Scholar 

  37. Heaton, T. H. 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors 64, 1–20.

    Article  ADS  Google Scholar 

  38. Kostrov, B. V. 1964. Self-similar problems of propagation of shear cracks. Journal of Applied Mathematics and Mechanics 28, 1077–1087 (in Russian).

    Article  MathSciNet  MATH  Google Scholar 

  39. Madariaga, R. 1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America 66, 639–666.

    Google Scholar 

  40. Freund, L. B. 1979. The mechanics of dynamic shear crack propagation. Journal of Geophysical Research 84, 2199–2209.

    Article  ADS  Google Scholar 

  41. Day, S. M. 1982. Three-dimensional simulation of spontaneous rupture: The effect of nonuniform prestres. Bulletin of the Seismological Society of America 72, 1889–1902.

    Google Scholar 

  42. Ida, Y. 1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research 77, 3796–3805.

    Article  ADS  Google Scholar 

  43. Andrews, D. J. 1985. Dynamic plane-strain shear rupture with a slip-weakening friction law calculated by a boundary integral method. Bulletin of the Seismological Society of America 75, 1–21.

    Google Scholar 

  44. Harris, R., and S. M. Day. 1993. Dynamics of fault interactions: Parallel strike-slip faults. Journal of Geophysical Research 98, 4461–4472.

    Article  ADS  Google Scholar 

  45. Das, S., and K. Aki. 1977. A numerical study of two-dimensional spontaneous rupture propagation. Geophysical Journal of the Royal Astronomical Society 50, 643–668.

    MATH  Google Scholar 

  46. Das, S. 1980. A numerical method for determination of source time functions for general three-dimensional rupture propagation. Geophysical Journal of the Royal Astronomical Society 62, 591–604.

    MATH  Google Scholar 

  47. Das, S. 1985. Application of dynamic shear crack models to the study of the earthquake faulting process. International Journal of Fracture 27, 263–276.

    Article  Google Scholar 

  48. Zheng, G., and J. R. Rice. 1998. Conditions under which velocity-weakening friction allows a self-healing versus cracklike mode of rupture. Bulletin of the Seismological Society of America 88, 1466–1483.

    Google Scholar 

  49. Cochard, A. and R. Madariaga. 1996. Complexity of seismicity due to highly rate dependent friction. Journal of Geophysical Research 101, 25321–25336.

    Article  ADS  Google Scholar 

  50. Beeler, N. M., and T. E. Tullis. 1996. Self-healing slip pulse in dynamic rupture models due to velocity-dependent strength. Bulletin of the Seismological Society of America 86, 1130–1148.

    Google Scholar 

  51. Rice, J. R., N. Lapusta, and K. Ranjith. 2001. Rate and state dependent friction and the stability of sliding between elastically deformable solids. Submitted to Journal of the Mechanics and Physics of Solids.

    Google Scholar 

  52. Weertman, J. 1969. Dislocation motion on an interface with friction that is dependent on sliding velocity. Journal of Geophysical Research 74, 6617–6622.

    Article  ADS  Google Scholar 

  53. Lapusta, N., J. R. Rice, and R. Madariaga. 2000. Research in progress.

    Google Scholar 

  54. Nielsen, S. B., and J. M. Carlson. 2000. Rupture pulse characterization: Self-healing, self-similar, expanding solutions in a continuum model of fault dynamics. Bulletin of the Seismological Society of America, in press.

    Google Scholar 

  55. Renardy, M. 1992. Ill-posedness at the boundary for elastic solids sliding under Coulomb friction. Journal of Elasticity 27, 281–287.

    Article  MathSciNet  MATH  Google Scholar 

  56. Adams, G. G. 1995. Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction. Journal of Applied Mechanics 62, 867–872.

    Article  MATH  Google Scholar 

  57. Martins, J. A. C., J. Guimarães, and L. O. Faria. 1995. Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions. Journal of Vibration and Acoustics 117, 445–451.

    Article  Google Scholar 

  58. Simões, F. M. F., and J. A. C. Martins. 1998. Instability and ill-posedness in some friction problems. International Journal of Engineering Science 36, 1265–1293.

    Article  MathSciNet  Google Scholar 

  59. Ranjith, K., and J. R. Rice. 2001. Slip dynamics at an interface between dissimilar materials. Journal of the Mechanics and Physics of Solids 49, 341–361.

    Article  MATH  ADS  Google Scholar 

  60. Weertman, J. 1980. Unstable slippage across a fault that separates elastic media of different elastic constants. Journal of Geophysical Research 85, 1455–1461.

    Article  ADS  Google Scholar 

  61. Adams, G. G. 1998. Steady sliding of two elastic half-spaces with friction reduction due to interface stick-slip. Journal of Applied Mechanics 65, 470–475.

    Article  Google Scholar 

  62. Andrews, D. J., and Y. Ben-Zion. Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research 102, 553–571.

    Google Scholar 

  63. Ben-Zion, Y., and D. J. Andrews. 1998. Properties and implications of dynamic rupture along a material interface. Bulletin of the Seismological Society of America, 88, 1085–1094.

    Google Scholar 

  64. Harris, R., and S. M. Day. 1997. Effects of a low velocity zone on a dynamic rupture. Bulletin of the Seismological Society of America 87, 1267–1280.

    Google Scholar 

  65. Cochard, A., and J. R. Rice. 2000. Fault rupture between dissimilar materials: Ill-posedness, regularization and slip-pulse response. Journal of Geophysical Research 105, 25891–25907.

    Article  ADS  Google Scholar 

  66. Weertman, J. 1963. Dislocations moving uniformly on the interface between isotropic media of different elastic properties. Journal of the Mechanics and Physics of Solids 11, 197–204.

    Article  ADS  Google Scholar 

  67. Gol’dshtein, R. V. 1967. On surface waves in joined elastic media and their relation to crack propagation along the junction. Prikladnaya Matematika i Mekhanika 31(3), 468–475 (English translation, Journal of Applied Mathematics and Mechanics 31, 496–502).

    Google Scholar 

  68. Achenbach, J. D., and H. I. Epstein. 1967. Dynamic interaction of a layer and a half-space. Journal of Engineering Mechanics 5, 27–42.

    Google Scholar 

  69. Prakash, V., and R. J. Clifton. 1992. Pressure-shearplate impact measurement of dynamic friction for high speed machining applications. Proceedings of VII International Congress on Experimental Mechanics. Bethel, Conn.: Society for Experimental Mechanics, 556–564.

    Google Scholar 

  70. Prakash, V. 1998. Frictional response of sliding interfaces subjected to time varying normal pressures. Journal of Tribology 120, 97–102.

    Article  Google Scholar 

  71. Lambros, J., and A. J. Rosakis. 1995. Development of a dynamic decohesion criterion for subsonic fracture of the interface between two dissimilar materials. Proceedings of the Royal Society of London A 451, 711–736.

    Article  ADS  Google Scholar 

  72. Singh, R. P., J. Lambros, A. Shukla, and A. J. Rosakis. 1997. Investigation of the mechanics of intersonic crack propagation along a bimaterial interface using coherent gradient sensing and photoelasticity. Proceedings of the Royal Society of London A 453, 2649–2667.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Rice, J.R. (2001). New Perspectives on Crack and Fault Dynamics. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics