Skip to main content
Log in

Cannabidiol and mitragynine exhibit differential interactive effects in the attenuation of paclitaxel-induced mechanical allodynia, acute antinociception, and schedule-controlled responding in mice

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

For many chemotherapy patients peripheral neuropathy is a debilitating side effect. Mitragyna speciosa (kratom) contains the alkaloid mitragynine (MG), which produces analgesia in multiple preclinical pain models. In humans, anecdotal reports suggest cannabidiol (CBD) may enhance kratom-related analgesia. We examined the interactive activity of MG and CBD in a mouse chemotherapy-induced peripheral neuropathy (CIPN) model. We also examined MG + CBD in acute antinociception and schedule-controlled responding assays, as well as examined underlying receptor mechanisms.

Methods

Male and female C57BL/6J mice received a cycle of intraperitoneal (ip) paclitaxel injections (cumulative dose 32 mg/kg). The von Frey assay was utilized to assess CIPN allodynia. In paclitaxel-naïve mice, schedule-controlled responding for food was conducted under a fixed ratio (FR)-10, and hot plate antinociception was examined.

Results

MG dose-relatedly attenuated CIPN allodynia (ED50 102.96 mg/kg, ip), reduced schedule-controlled responding (ED50 46.04 mg/kg, ip), and produced antinociception (ED50 68.83 mg/kg, ip). CBD attenuated allodynia (ED50 85.14 mg/kg, ip) but did not decrease schedule-controlled responding or produce antinociception. Isobolographic analysis revealed 1:1, 3:1 MG + CBD mixture ratios additively attenuated CIPN allodynia. All combinations decreased schedule-controlled responding and produced antinociception. WAY-100635 (serotonin 5-HT1A receptor antagonist) pretreatment (0.01 mg/kg, ip) antagonized CBD anti-allodynia. Naltrexone (pan opioid receptor antagonist) pretreatment (0.032 mg/kg, ip) antagonized MG anti-allodynia and acute antinociception but produced no change in MG-induced decreased schedule-controlled behavior. Yohimbine (α2 receptor antagonist) pretreatment (3.2 mg/kg, ip) antagonized MG anti-allodynia and produced no change in MG-induced acute antinociception or decreased schedule-controlled behavior.

Conclusions

Although more optimization is needed, these data suggest CBD combined with MG may be useful as a novel CIPN therapeutic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during this study are available in the Open Science Framework repository (https://doi.org/10.17605/OSF.IO/5TZK3) and are available from the corresponding author upon reasonable request.

Abbreviations

α2 :

α2-Adrenergic

% MPE:

Percentage maximum possible effect

5-HT1A :

Serotonin 1A

7-OH-MG:

7-Hydroxymitragynine

ANOVA:

Analysis of variance

CBD:

Cannabidiol

CIPN:

Chemotherapy-induced peripheral neuropathy

FR:

Fixed ratio

ip :

Intraperitoneal

MG:

Mitragynine

References

  1. Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy-induced peripheral neuropathy: a current review. Ann Neurol. 2017;81(6):772–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park SB, Kwok JB, Loy CT, Friedlander ML, Lin CSY, Krishnan AV, et al. Paclitaxel-induced neuropathy: potential association of MAPT and GSK3B genotypes. BMC Cancer. 2014;22(14):993.

    Article  Google Scholar 

  3. Postma TJ, Vermorken JB, Liefting AJ, Pinedo HM, Heimans JJ. Paclitaxel-induced neuropathy. Ann Oncol. 1995;6(5):489–94.

    Article  CAS  PubMed  Google Scholar 

  4. Anekar AA, Cascella M. WHO Analgesic Ladder. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [Cited 2022 Jan 22]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK554435/

  5. Hylands-White N, Duarte RV, Raphael JH. An overview of treatment approaches for chronic pain management. Rheumatol Int. 2017;37(1):29–42.

    Article  CAS  PubMed  Google Scholar 

  6. Magee D, Bachtold S, Brown M, Farquhar-Smith P. Cancer pain: where are we now? Pain ManaG. 2019;9(1):63–79.

    Article  PubMed  Google Scholar 

  7. Coupland C, Hill T, Morriss R, Arthur A, Moore M, Hippisley-Cox J. Antidepressant use and risk of suicide and attempted suicide or self harm in people aged 20 to 64: cohort study using a primary care database. BMJ. 2015;18(350): h517.

    Article  Google Scholar 

  8. Piccolo J, Kolesar JM. Prevention and treatment of chemotherapy-induced peripheral neuropathy. Am J Health Syst Pharm. 2014;71(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Romeu A, Cox DJ, Smith KE, Dunn KE, Griffiths RR. Kratom (Mitragyna speciosa): user demographics, use patterns, and implications for the opioid epidemic. Drug Alcohol Depend. 2020;1(208): 107849.

    Article  Google Scholar 

  10. Schimmel J, Amioka E, Rockhill K, Haynes CM, Black JC, Dart RC, et al. Prevalence and description of kratom (Mitragyna speciosa) use in the United States: a cross-sectional study. Addiction. 2021;116(1):176–81.

    Article  PubMed  Google Scholar 

  11. Smith KE, Dunn KE, Grundmann O, Garcia-Romeu A, Rogers JM, Swogger MT, Epstein DH. Social, psychological, and substance use characteristics of U.S. adults who use kratom: initial findings from an online, crowdsourced study. Exp Clin Psychopharmacol. 2022;30(6):983–96. https://doi.org/10.1037/pha0000518.

    Article  PubMed  Google Scholar 

  12. Grundmann O, Veltri CA, Morcos D, Knightes D, Smith KE, Singh D, et al. Exploring the self-reported motivations of kratom (Mitragyna speciosa Korth.) use: a cross-sectional investigation. Am J Drug Alcohol Abuse. 2022. https://doi.org/10.1080/00952990.2022.2041026.

    Article  PubMed  Google Scholar 

  13. McDonagh MS, Wagner J, Ahmed AY, Fu R, Morasco B, Kansagara D, et al. Living Systematic Review on Cannabis and Other Plant-Based Treatments for Chronic Pain [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2021 [Cited 2022 Sep 16]. (AHRQ Comparative Effectiveness Reviews). Available from: http://www.ncbi.nlm.nih.gov/books/NBK575762/

  14. De Gregorio D, McLaughlin RJ, Posa L, Ochoa-Sanchez R, Enns J, Lopez-Canul M, et al. Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain. Pain. 2019;160(1):136–50.

    Article  PubMed  Google Scholar 

  15. King KM, Myers AM, Soroka-Monzo AJ, Tuma RF, Tallarida RJ, Walker EA, et al. Single and combined effects of Δ9-tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain. Br J Pharmacol. 2017;174(17):2832–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ortiz YT, McMahon LR, Wilkerson JL. Medicinal cannabis and central nervous system disorders. Front Pharmacol. 2022;13: 881810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsumoto K, Mizowaki M, Suchitra T, Takayama H, Sakai S, Aimi N, et al. Antinociceptive action of mitragynine in mice: evidence for the involvement of supraspinal opioid receptors. Life Sci. 1996;59(14):1149–55.

    Article  CAS  PubMed  Google Scholar 

  18. Foss JD, Nayak SU, Tallarida CS, Farkas DJ, Ward SJ, Rawls SM. Mitragynine, bioactive alkaloid of kratom, reduces chemotherapy-induced neuropathic pain in rats through α-adrenoceptor mechanism. Drug Alcohol Depend. 2020;1(209): 107946.

    Article  Google Scholar 

  19. Obeng S, Kamble SH, Reeves ME, Restrepo LF, Patel A, Behnke M, et al. Investigation of the adrenergic and opioid binding affinities, metabolic stability, plasma protein binding properties, and functional effects of selected indole-based kratom alkaloids. J Med Chem. 2020;63(1):433–9.

    Article  CAS  PubMed  Google Scholar 

  20. Obeng S, Wilkerson JL, León F, Reeves ME, Restrepo LF, Gamez-Jimenez LR, et al. Pharmacological comparison of mitragynine and 7-hydroxymitragynine in vitro affinity and efficacy for μ-opioid receptor and opioid-like behavioral effects in rats. J Pharmacol Exp Ther. 2021;376(3):410–27.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thongpradichote S, Matsumoto K, Tohda M, Takayama H, Aimi N, SakaiIchiro S, et al. Identification of opioid receptor subtypes in antinociceptive actions of supraspinally-admintstered mitragynine in mice. Life Sci. 1998;62(16):1371–8.

    Article  CAS  PubMed  Google Scholar 

  22. Watanabe K, Yano S, Horie S, Yamamoto LT. Inhibitory effect of mitragynine, an alkaloid with analgesic effect from Thai medicinal plant Mitragyna speciosa, on electrically stimulated contraction of isolated guinea-pig ileum through the opioid receptor. Life Sci. 1997;60(12):933–42.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto LT, Horie S, Takayama H, Aimi N, Sakai S, ichiro, Yano S, et al. Opioid receptor agonistic characteristics of mitragynine pseudoindoxyl in comparison with mitragynine derived from Thai medicinal plant Mitragyna speciosa. Gen Pharmacol Vasc Syst. 1999;33(1):73–81.

    Article  CAS  Google Scholar 

  24. Eddy NB, Leimbach D. Synthetic analgesics. Ii. Dithienylbutenyl- and dithienylbutylamines. J Pharmacol Exp Ther. 1953;107(3):385–93.

    CAS  PubMed  Google Scholar 

  25. Wilkerson JL, Felix JS, Restrepo LF, Ansari MI, Coop A, McMahon LR. The effects of morphine, baclofen, and buspirone alone and in combination on schedule-controlled responding and hot plate antinociception in rats. J Pharmacol Exp Ther. 2019;370(3):380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cunningham CS, McMahon LR. The effects of nicotine, varenicline, and cytisine on schedule-controlled responding in mice: differences in α4β2 nicotinic receptor activation. Eur J Pharmacol. 2011;654(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  27. McMahon LR, France CP. Acute and chronic effects of the neuroactive steroid pregnanolone on schedule-controlled responding in rhesus monkeys. Behav Pharmacol. 2002;13(7):545–55.

    Article  CAS  PubMed  Google Scholar 

  28. Toma W, Kyte SL, Bagdas D, Alkhlaif Y, Alsharari SD, Lichtman AH, et al. Effects of paclitaxel on the development of neuropathy and affective behaviors in the mouse. Neuropharmacology. 2017;1(117):305–15.

    Article  Google Scholar 

  29. Avery BA, Boddu SP, Sharma A, Furr EB, Leon F, Cutler SJ, et al. Comparative pharmacokinetics of mitragynine after oral administration of Mitragyna speciosa (Kratom) leaf extracts in rats. Planta Med. 2019;85(4):340–6.

    Article  CAS  PubMed  Google Scholar 

  30. Sharma A, Kamble SH, León F, Chear NJY, King TI, Berthold EC, et al. Simultaneous quantification of ten key Kratom alkaloids in Mitragyna speciosa leaf extracts and commercial products by ultra-performance liquid chromatography-tandem mass spectrometry. Drug Test Anal. 2019;11(8):1162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsumoto K, Mizowaki M, Suchitra T, Murakami Y, Takayama H, Sakai S, et al. Central antinociceptive effects of mitragynine in mice: contribution of descending noradrenergic and serotonergic systems. Eur J Pharmacol. 1996;317(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  32. Ignatowska-Jankowska B, Wilkerson JL, Mustafa M, Abdullah R, Niphakis M, Wiley JL, et al. Selective monoacylglycerol lipase inhibitors: antinociceptive versus cannabimimetic effects in mice. J Pharmacol Exp Ther. 2015;353(2):424–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilkerson JL, Ghosh S, Bagdas D, Mason BL, Crowe MS, Hsu KL, et al. Diacylglycerol lipase β inhibition reverses nociceptive behaviour in mouse models of inflammatory and neuropathic pain. Br J Pharmacol. 2016;173(10):1678–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  35. McMahon LR, Cunningham KA. Antagonism of 5-hydroxytryptamine(2a) receptors attenuates the behavioral effects of cocaine in rats. J Pharmacol Exp Ther. 2001;297(1):357–63.

    CAS  PubMed  Google Scholar 

  36. Wilkerson JL, Felix JS, Bilbrey JA, McCurdy CR, McMahon LR. Characterization of a mouse neuropathic pain model caused by the highly active antiviral therapy (HAART) stavudine. Pharmacol Rep. 2021;73(5):1457–64.

    Article  CAS  PubMed  Google Scholar 

  37. Tallarida RJ. Drug synergism and dose-effect data analysis. New York: Chapman and Hall/CRC; 2000. p. 264.

    Book  Google Scholar 

  38. Tallarida RJ. Drug synergism: its detection and applications. J Pharmacol Exp Ther. 2001;298(3):865–72.

    CAS  PubMed  Google Scholar 

  39. Daval G, Vergé D, Basbaum AI, Bourgoin S, Hamon M. Autoradiographic evidence of serotonin1 binding sites on primary afferent fibres in the dorsal horn of the rat spinal cord. Neurosci Lett. 1987;83(1–2):71–6.

    Article  CAS  PubMed  Google Scholar 

  40. Ongjoco RRS, Richardson CD, Rudner XL, Stafford-Smith M, Schwinn DA. α2-Adrenergic receptors in human dorsal root ganglia: predominance of α2band α2cSubtype mRNAs. Anesthesiology. 2000;92(4):968–76.

    Article  CAS  Google Scholar 

  41. Berthold EC, Kamble SH, Raju KS, Kuntz MA, Senetra AS, Mottinelli M, et al. The lack of contribution of 7-hydroxymitragynine to the antinociceptive effects of mitragynine in mice: a pharmacokinetic and pharmacodynamic study. Drug Metab Dispos. 2022;50(2):158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10(1):23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Romero TRL, Guzzo LS, Duarte IDG. Mu, delta, and kappa opioid receptor agonists induce peripheral antinociception by activation of endogenous noradrenergic system. J Neurosci Res. 2012;90(8):1654–61.

    Article  CAS  PubMed  Google Scholar 

  44. Hiranita T, Leon F, Felix JS, Restrepo LF, Reeves ME, Pennington AE, et al. The effects of mitragynine and morphine on schedule-controlled responding and antinociception in rats. Psychopharmacology. 2019;236(9):2725–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Obeng S, León F, Patel A, Gonzalez JDZ, Silva LCD, Restrepo LF, et al. Interactive Effects of µ-Opioid and Adrenergic-α2 Receptor Agonists in Rats: Pharmacological Investigation of the Primary Kratom Alkaloid Mitragynine and Its Metabolite 7-Hydroxymitragynine. J Pharmacol Exp Ther [Internet]. 2022 Jan 1 [Cited 2022 Nov 2]. https://jpet.aspetjournals.org/content/early/2022/09/24/jpet.122.001192

  46. León F, Obeng S, Mottinelli M, Chen Y, King TI, Berthold EC, et al. Activity of Mitragyna speciosa (“Kratom”) Alkaloids at Serotonin Receptors. J Med Chem [Internet]. 2021 Sep 1 [cited 2021 Sep 17]. https://doi.org/10.1021/acs.jmedchem.1c00726.

  47. Granados-Soto V, Argüelles CF, Rocha-González HI, Godínez-Chaparro B, Flores-Murrieta FJ, Villalón CM. The role of peripheral 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F serotonergic receptors in the reduction of nociception in rats. Neuroscience. 2010;165(2):561–8.

    Article  CAS  PubMed  Google Scholar 

  48. Perrin FE, Gerber YN, Teigell M, Lonjon N, Boniface G, Bauchet L, et al. Anatomical study of serotonergic innervation and 5-HT(1A) receptor in the human spinal cord. Cell Death Dis. 2011;13(2): e218.

    Article  Google Scholar 

  49. Riad M, Garcia S, Watkins KC, Jodoin N, Doucet É, Langlois X, et al. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol. 2000;417(2):181–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institute on Drug Abuse [Grant DA25267, DA48353] (CRM and LRM) and funding from the Florida Consortium for Medical Marijuana Clinical Outcomes Research (JLW). The authors would like to thank Ms. Danielle M. Sevier and Ms. Samantha N. Hart at the College of Pharmacy, University of Florida, for administrative assistance.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: YTO, LR, JLW. Conducted experiments: JAB, JSF, EAK, YTO. Contributed new reagents or analytic tools: MM, SM and CRM. Performed data analysis: JSF, YTO, JLW. Wrote or contributed to the writing of the manuscript: YTO, EAK, MM, LRM, JLW.

Corresponding author

Correspondence to Jenny L. Wilkerson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 844 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, Y.T., Bilbrey, J.A., Felix, J.S. et al. Cannabidiol and mitragynine exhibit differential interactive effects in the attenuation of paclitaxel-induced mechanical allodynia, acute antinociception, and schedule-controlled responding in mice. Pharmacol. Rep 75, 937–950 (2023). https://doi.org/10.1007/s43440-023-00498-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00498-w

Keywords

Navigation