Skip to main content
Log in

Review of Rear Emitter Silicon Heterojunction Solar Cells

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

This inclusive study provides detailed information regarding the evolution of rear emitter silicon heterojunction solar cells. Silicon heterojunction (SHJ) solar cells of a p-type on the rear side have garnered increasing attention for various reasons. First, owing to a limitation of the p-type hydrogenated amorphous silicon layer, further optimization relative to an n-type cannot be achieved, and an accumulation of electrons at the front side allows utilizing an n-type wafer to affirm a lateral current transport. Second, better thin n-type nanocrystalline silicon (oxide) contact layers compared to p-type wafers are grown, and allow greater freedom in the structural design. The optical properties of the front side’s transparent conductive oxide (TCO) layer can be emphasized owing to a lateral transport on the cells, and majority of the carriers are affirmed through a Si substrate. In the instance of a rear emitter, the TCO layer is in relief to an adjustment inhibiting the contact resistance between TCO/a-Si:H(p). The fabrication was done in such a manner of SHJ rear emitter solar cells that they achieve greater optimization and overall efficiency of 23.46%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted from [29], with the permission from Elsevier

Fig. 3

Reprinted from [29], with the permission from Elsevier

Fig. 4

Reprinted from [31], with the permission from John Wiley and Sons

Similar content being viewed by others

References

  1. K.D. Hong, Stability improvement of center lathes. J. KSPE 2(2), 123–126 (1992)

    Google Scholar 

  2. M. Lozac’h, S. Nunomura, H. Sai, K. Matsubara, Passivation property of ultrathin SiOx: H/a-Si: H stack layers for solar cell applications. Sol. Energy Mater. Sol. Cells 185, 8–15 (2018)

    Article  Google Scholar 

  3. A. Descoeudres, C. Allebé, N. Badel, L. Barraud, J. Champliaud, G. Christmann, F. Debrot, A. Faes, J. Geissbühler, J. Horzel, A. Lachowicz, Low-temperature processes for passivation and metallization of high-efficiency crystalline silicon solar cells. Sol. Energy 175, 54–59 (2018)

    Article  CAS  Google Scholar 

  4. P. Fallahazad, N. Naderi, M.J. Eshraghi, A. Massoudi, Combination of surface texturing and nanostructure coating for reduction of light reflection in ZnO/Si heterojunction thin film solar cell. J. Mater. Sci. Mater. Electron. 29, 6289–6296 (2018)

    Article  CAS  Google Scholar 

  5. X. Yang, P. Zheng, Q. Bi, K. Weber, Silicon heterojunction solar cells with electron selective TiOx contact. Sol. Energy Mater. Sol. Cells 150, 32–38 (2016)

    Article  CAS  Google Scholar 

  6. I. Mack et al., Properties of mixed phase silicon-oxide-based passivating contacts for silicon solar cells. Sol. Energy Mater. Sol. Cells 181, 9–14 (2018). https://doi.org/10.1016/j.solmat.2017.12.030

    Article  CAS  Google Scholar 

  7. M. Taguchi, A. Yano, S. Tohoda et al., 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2013)

    Article  Google Scholar 

  8. T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, Development status of high-efficiency HIT solar cells. Sol. Energy Mater. Sol. Cells 95, 18–21 (2011)

    Article  CAS  Google Scholar 

  9. C. Battaglia, A. Cuevas, S.D. Wolf, High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016)

    Article  CAS  Google Scholar 

  10. D. Adachi, J.L. Hernández, K. Yamamoto, Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506-1–233506-3 (2015)

    Article  Google Scholar 

  11. K. Yoshikawa, H. Kawasaki, W. Yoshida et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032-1–17032-8 (2017)

    Article  Google Scholar 

  12. R.V. Chavali, E.C. Johlin, J.L. Gray, T. Buonassisi, M.A. Alam, A framework for process-to-module modeling of a-Si/c-Si (HIT) heterojunction solar cells to investigate the cell-to-module efficiency gap. IEEE J. Photovolt. 6, 875–887 (2016)

    Article  Google Scholar 

  13. E. Kobayashi, N. Nakamura, K. Hashimoto, and Y. Watabe, in Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition (2013), p. 691

  14. M. Bivour, S. Schröer, M. Hermle, S.W. Glunz, Silicon heterojunction rear emitter solar cells: less restrictions on the optoelectrical properties of front side TCOs. Sol. Energy Mater. Sol. Cells 122, 120 (2014)

    Article  CAS  Google Scholar 

  15. M. Bivour, H. Steinkemper, J. Jeurink, S. Schröer, M. Hermle, Rear emitter silicon heterojunction solar cells: fewer restrictions on the optoelectrical properties of front side TCOs. Energy Proc. 55, 229–234 (2014)

    Article  CAS  Google Scholar 

  16. T. Watahiki, T. Furuhata, T. Matsuura et al., Rear-emitter Si heterojunction solar cells with over 23% efficiency. Appl. Phys. Express 8, 021402-1–021402-3 (2015)

    Article  Google Scholar 

  17. E. Kobayashi, Y. Watabe, R. Hao, T.S. Ravi, Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers. Prog. Photovolt. Res. Appl. 24, 1295–1303 (2016)

    Article  CAS  Google Scholar 

  18. M. Bivour et al., Sol. Energy Mater. Sol. Cells 122, 120–129 (2014)

    Article  CAS  Google Scholar 

  19. W. Böttler, V. Smirnov, A. Lambertz, J. Hüpkes, F. Finger, Window layer development for microcrystalline silicon solar cells in n-i-p configuration. Phys. Status Solidi C 7(3–4), 1069–1072 (2010)

    Google Scholar 

  20. K.-S. Ji, J. Choi, W.-S. Choi, H.-M. Lee, D. Kim, Surface passivation properties of boron and phosphor-doped a-Si:H heterojunction solar cells, in: Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, (2010), pp. 3190–3192

  21. A. Kanevce, W.K. Metzger, The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells. J. Appl. Phys. 105(9), 094507 (2009)

    Article  Google Scholar 

  22. L. Zhao, C.L. Zhou, H.L. Li, H.W. Diao, W.J. Wang, Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation. Phys. Status Solidi A 205(5), 1215–1221 (2008)

    Article  CAS  Google Scholar 

  23. S. De Wolf, M. Kondo, Boron-doped a-Si:H/c-Si interface passivation: degradation mechanism. Appl. Phys. Lett. 91, 112109 (2007)

    Article  Google Scholar 

  24. Z.C. Holman, A. Descoeudres, L. Barraud, F.Z. Fernandez, J.P. Seif, S. De Wolf, C. Ballif, Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7–15 (2012)

    Article  Google Scholar 

  25. R. Stangl, D. Schaffarzik, A. Laades, K. Kliefoth, M. Schmidt, M.W. Fuhs, Characterization of interfaces in amorphous/crystalline silicon heterojunction solar cells by surface photovoltage spectroscopy, in: Proceedings of the 19th EU PVSEC, Paris, France, (2004), pp. 686–689

  26. A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, R. Schafranek, S.P. Harvey, T.O. Mason, Surface potentials of magnetron sputtered transparent conducting oxides. Thin Solid Films 518(4), 1197–1203 (2009)

    Article  CAS  Google Scholar 

  27. S. De Wolf, A. Descoeudres, Z.C. Holman, et al., High-efficiency silicon heterojunction solar cells: a review, Green 2(1), 7–24 (2012)

    Article  CAS  Google Scholar 

  28. J. Zhao, A. Wang, P.P. Altermatt et al., 24%efficient perl silicon solar cell: recent improvements in high efficiency silicon cell research. Sol. Energy Mater. Sol. Cells 41, 87–99 (1996)

    Article  Google Scholar 

  29. M. Bivour, C. Reichel, M. Hermle, S.W. Glunz, Improving the a-Si: H(p) rear emitter contact of n-type silicon solar cells. Sol. Energy Mater. Sol. Cells 106, 11–16 (2012)

    Article  CAS  Google Scholar 

  30. N. Jensen, U. Rau, R.M. Hausner, S. Uppal, L. Oberbeck, R.B. Bergmann, Recombination mechanisms in amorphous/crystalline silicon heterojunction solar cells. J. Appl. Phys. 87, 2639–2645 (2000)

    Article  CAS  Google Scholar 

  31. L. Yang, S. Zhong, W. Zhang, X. Li, Z. Li, Y. Zhuang, X. Wang, L. Zhao, X. Cao, X. Deng, Q. Wang, Study and development of rear-emitter Si heterojunction solar cells and application of direct copper metallization. Prog. Photovolt. Res. Appl. 26(6), 385–396 (2018)

    Article  CAS  Google Scholar 

  32. T. Watahiki, T. Furuhata, T. Matsuura, T. Shinagawa, Y. Shirayanagi, T. Morioka, T. Hayashida, Y. Yuda, S. Kano, Y. Sakai, H. Tokioka, Rear-emitter Si heterojunction solar cells with over 23% efficiency. Appl. Phys. Express 8(2), 021402 (2015)

    Article  Google Scholar 

  33. S. Kim, J. Park, P.D. Phong, C. Shin, S.M. Iftiquar, J. Yi, Improving the efficiency of rear emitter silicon solar cell using an optimized n-type silicon oxide front surface field layer. Sci. Rep. 8(1), 10657 (2018)

    Article  Google Scholar 

  34. S. Li, Z. Tang, J. Xue, J. Gao, Z. Shi, X. Li, Comparative study on front emitter and rear emitter n-type silicon heterojunction solar cells: the role of folded electrical fields. Vacuum 149, 313–318 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of (No. 20193010014780) and (No.20173010012940).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Chel Cho or Junsin Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhar, M.Q., Hussain, S.Q., Kim, S. et al. Review of Rear Emitter Silicon Heterojunction Solar Cells. Trans. Electr. Electron. Mater. 21, 138–143 (2020). https://doi.org/10.1007/s42341-020-00172-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00172-5

Keywords

Navigation