Skip to main content
Log in

Cation-anion synergetic interactions achieving tunable birefringence in quasi-one-dimensional antimony(III) fluoride oxalates

阴阳离子协同作用在系列准一维氟化草酸锑中实现双折射调控

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Birefringent materials with large optical anisotropy, which can be used to modulate the polarization of light, play a key role in laser techniques and science. However, the exploration studies of new, superior birefringent materials develop extremely slowly due to the lack of effective guidelines for rational design. Herein, three antimony(III) fluoride oxalates, namely, Na2Sb2(C2O4)F6, K2Sb2(C2O4)F6, and Cs2Sb2-(C2O4)2F4·H2O, were successfully synthesized through a rational combination of π-conjugated C2O42− anions and Sb3+ cations with stereochemically active lone pairs. These oxalates feature unique quasi-one-dimensional chain structures that induce large optical anisotropy. Remarkably, Cs2Sb2(C2O4)2-F4·H2O exhibits the largest birefringence (0.325@546 nm) among all reported antimony(III)-based oxysalts. Detailed structural analysis and theoretical calculations confirmed that the optical anisotropy of these oxalates could be tuned through the synergetic interactions of templated cations and anionic functional groups. This work may open the door to efficiently designing excellent birefringent materials and guide the further discovery of other novel structure-driven functional materials.

摘要

具有较大光学各向异性的双折射材料可以用来调制光的偏振,在激光科学与技术中发挥着关键作用. 然而, 由于缺乏理性设计的有效策略, 新型高性能双折射材料的探索研究进展极其缓慢. 本文通过采用π共轭C2O42−阴离子和含具有立体化学活性孤对电子的Sb3+阳离子相结合, 成功地合成了三例氟化草酸锑盐, 分别为Na2Sb2(C2O4)F6、K2Sb2-(C2O4)F6和Cs2Sb2(C2O4)2F4·H2O.它们都具有独特的准一维链状结构,并表现出大的光学各向异性. 尤其是Cs2Sb2(C2O4)2F4·H2O表现出巨大的双折射率(0.325@546nm), 在所有已报道的锑(III)基含氧酸盐中最大. 详细的结构分析和理论计算证实, 阳离子模版剂和阴离子功能基团的协同作用可以调节化合物的光学各向异性. 这项工作为高效设计优良的双折射材料打开了一扇大门, 并为新型结构驱动功能材料的进一步发现提供了指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weber MF, Stover CA, Gilbert LR, et al. Giant birefringent optics in multilayer polymer mirrors. Science, 2000, 287: 2451–2456

    Article  CAS  Google Scholar 

  2. Xie ZY, Sun LG, Han GZ, et al. Optical switching of a birefringent photonic crystal. Adv Mater, 2008, 20: 3601–3604

    Article  CAS  Google Scholar 

  3. Lu WG, Wu XG, Huang S, et al. Strong polarized photoluminescence from stretched perovskite-nanocrystal-embedded polymer composite films. Adv Opt Mater, 2017, 5: 1700594

    Article  Google Scholar 

  4. Liu S, Liu X, Zhao S, et al. An exceptional peroxide birefringent material resulting from d-π interactions. Angew Chem Int Ed, 2020, 59: 9414–9417

    Article  CAS  Google Scholar 

  5. Tagaya A, Ohkita H, Mukoh M, et al. Compensation of the birefringence of a polymer by a birefringent crystal. Science, 2003, 301: 812–814

    Article  CAS  Google Scholar 

  6. Luo HT, Tkaczyk T, Dereniak EL, et al. High birefringence of the yttrium vanadate crystal in the middle wavelength infrared. Opt Lett, 2006, 31: 616–618

    Article  CAS  Google Scholar 

  7. Zhou G, Jun X, Xingda C, et al. Growth and spectrum of a novel birefringent α-BaB2O4 crystal. J Cryst Growth, 1998, 191: 517–519

    Article  CAS  Google Scholar 

  8. Cyranoski D. Materials science: China’s crystal cache. Nature, 2009, 457: 953–955

    Article  CAS  Google Scholar 

  9. Meng X, Yin W, Xia M. Cyanurates consisting of intrinsic planar π-conjugated 6-membered rings: An emerging source of optical functional materials. Coord Chem Rev, 2021, 439: 213916

    Article  CAS  Google Scholar 

  10. Wu C, Jiang X, Wang Z, et al. UV solar-blind-region phase-matchable optical nonlinearity and anisotropy in a π-conjugated cation-containing phosphate. Angew Chem Int Ed, 2021, 60: 14806–14810

    Article  CAS  Google Scholar 

  11. Peng G, Lin C, Zhao D, et al. Sr[B(OH)4](IO3) and Li4Sr5[B12O22-(OH)4](IO3)2: Two unprecedented metal borate-iodates showing a subtle balance of enlarged band gap and birefringence. Chem Commun, 2019, 55: 11139–11142

    Article  CAS  Google Scholar 

  12. Wu C, Wu T, Jiang X, et al. Large second-harmonic response and giant birefringence of CeF2(SO4) induced by highly polarizable polyhedra. J Am Chem Soc, 2021, 143: 4138–4142

    Article  CAS  Google Scholar 

  13. Chen J, Hu CL, Mao JG. LiGaF2(IO3)2: A mixed-metal gallium iodate-fluoride with large birefringence and wide band gap. Sci China Mater, 2021, 64: 400–407

    Article  CAS  Google Scholar 

  14. Chen X, Zhang B, Zhang F, et al. Designing an excellent deep-ultraviolet birefringent material for light polarization. J Am Chem Soc, 2018, 140: 16311–16319

    Article  CAS  Google Scholar 

  15. Yang Y, Qiu Y, Gong P, et al. Lone-pair enhanced birefringence in an alkaline-earth metal tin(II) phosphate BaSn2(PO4)2. Chem Eur J, 2019, 25: 5648–5651

    Article  CAS  Google Scholar 

  16. Hao X, Luo M, Lin C, et al. M(NH2SO3)2 (M = Sr, Ba): Two deep-ultraviolet transparent sulfamates exhibiting strong second harmonic generation responses and moderate birefringence. Angew Chem Int Ed, 2021, 60: 7621–7625

    Article  CAS  Google Scholar 

  17. Halasyamani PS, Poeppelmeier KR. Noncentrosymmetric oxides. Chem Mater, 1998, 10: 2753–2769

    Article  CAS  Google Scholar 

  18. Tran TT, Young J, Rondinelli JM, et al. Mixed-metal carbonate fluorides as deep-ultraviolet nonlinear optical materials. J Am Chem Soc, 2017, 139: 1285–1295

    Article  CAS  Google Scholar 

  19. Tran TT, He J, Rondinelli JM, et al. RbMgCO3F: A new beryllium-free deep-ultraviolet nonlinear optical material. J Am Chem Soc, 2015, 137: 10504–10507

    Article  CAS  Google Scholar 

  20. Wang Q, Yang F, Wang X, et al. Deep-ultraviolet mixed-alkali-metal borates with induced enlarged birefringence derived from the structure rearrangement of the LiB3O5. Inorg Chem, 2019, 58: 5949–5955

    Article  CAS  Google Scholar 

  21. Zou G, Jo H, Lim SJ, et al. Rb3VO(O2)2CO3: A four-in-one carbonatoperoxovanadate exhibiting an extremely strong second-harmonic generation response. Angew Chem Int Ed, 2018, 57: 8619–8622

    Article  CAS  Google Scholar 

  22. Long Y, Dong X, Huang L, et al. CsHgNO3Cl2: A new nitrate UV birefringent material exhibiting an optimized layered structure. Inorg Chem, 2020, 59: 12578–12585

    Article  CAS  Google Scholar 

  23. Liu X, Kang L, Gong P, et al. LiZn(OH)CO3: A deep-ultraviolet nonlinear optical hydroxycarbonate designed from a diamond-like structure. Angew Chem Int Ed, 2021, 60: 13574–13578

    Article  CAS  Google Scholar 

  24. Zou G, Lin C, Jo H, et al. Pb2BO3Cl: A tailor-made polar lead borate chloride with very strong second harmonic generation. Angew Chem Int Ed, 2016, 55: 12078–12082

    Article  CAS  Google Scholar 

  25. Dong X, Huang L, Hu C, et al. CsSbF2SO4: An excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angew Chem Int Ed, 2019, 58: 6528–6534

    Article  CAS  Google Scholar 

  26. Guo J, Tudi A, Han S, et al. Sn2B5O9Cl: A material with large birefringence enhancement activated prepared via alkaline-earth-metal substitution by tin. Angew Chem Int Ed, 2019, 58: 17675–17678

    Article  CAS  Google Scholar 

  27. Min J, Abudurusuli A, Li J, et al. Enhanced optical anisotropy via dimensional control in alkali-metal chalcogenides. Phys Chem Chem Phys, 2020, 22: 19697–19703

    Article  CAS  Google Scholar 

  28. Niu S, Joe G, Zhao H, et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat Photon, 2018, 12: 392–396

    Article  CAS  Google Scholar 

  29. Tong T, Zhang W, Yang Z, et al. Series of crystals with giant optical anisotropy: A targeted strategic research. Angew Chem Int Ed, 2021, 60: 1332–1338

    Article  CAS  Google Scholar 

  30. Xia M, Mutailipu M, Li F, et al. Finding short-wavelength birefringent crystals with large optical anisotropy activated by π-conjugated [C(NH2)3] units. Cryst Growth Des, 2021, 21: 1869–1877

    Article  CAS  Google Scholar 

  31. Deng Y, Huang L, Dong X, et al. K2Sb(P2O7)F: Cairo pentagonal layer with bifunctional genes reveal optical performance. Angew Chem Int Ed, 2020, 59: 21151–21156

    Article  CAS  Google Scholar 

  32. Yang F, Wang L, Huang L, et al. The study of structure evolvement of KTiOPO4 family and their nonlinear optical properties. Coord Chem Rev, 2020, 423: 213491

    Article  CAS  Google Scholar 

  33. Ok KM. Toward the rational design of novel noncentrosymmetric materials: Factors influencing the framework structures. Acc Chem Res, 2016, 49: 2774–2785

    Article  CAS  Google Scholar 

  34. Escande P, Tichit D, Ducourant MB, et al. Interaction paire electronique libre-liaison pi dans un systeme non symetrique. Structure crystalline de Na2C2O4(SbF3)2. Annales de Chimie (Paris), 1978: 124

  35. Udovenko AA, Sigula NI, Davidovich RL. Crystal structure of cesium dioxalatote trafluorodiantimonate(III) monohydrate. Coord Chem (USSR), 1981, 7: 1708–1712

    CAS  Google Scholar 

  36. Sheldrick GM. A short history of SHELX. Acta Crystlogr Found Crystlogr, 2008, 64: 112–122

    Article  CAS  Google Scholar 

  37. Dolomanov OV, Bourhis LJ, Gildea RJ, et al. OLEX2: A complete structure solution, refinement and analysis program. J Appl Crystlogr, 2009, 42: 339–341

    Article  CAS  Google Scholar 

  38. Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystlogr, 2003, 36: 7–13

    Article  CAS  Google Scholar 

  39. Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys, 1968, 39: 3798–3813

    Article  CAS  Google Scholar 

  40. Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14: 2717–2744

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  42. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41: 7892–7895

    Article  CAS  Google Scholar 

  43. http://www.ccdc.cam.ac.uk

  44. Brown ID, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystlogr B Struct Sci, 1985, 41: 244–247

    Article  Google Scholar 

  45. Brese NE, O’Keeffe M. Bond-valence parameters for solids. Acta Crystlogr B Struct Sci, 1991, 47: 192–197

    Article  Google Scholar 

  46. Luan L, Li J, Chen C, et al. Solvent-free synthesis of crystalline metal phosphate oxalates with a (4,6)-connected fsh topology. Inorg Chem, 2018, 54: 9387–9389

    Article  Google Scholar 

  47. Sedlmeir F, Zeltner R, Leuchs G, et al. High-Q MgF2 whispering gallery mode resonators for refractometric sensing in aqueous environment. Opt Express, 2014, 22: 30934–30942

    Article  CAS  Google Scholar 

  48. Ghosh G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Optics Commun, 1999, 163: 95–102

    Article  CAS  Google Scholar 

  49. DeVore JR. Refractive indices of rutile and sphalerite. J Opt Soc Am, 1951, 41: 416–419

    Article  CAS  Google Scholar 

  50. Li XB, Hu CL, Kong F, et al. Ba3Sb2(PO4)4 and Cd3Sb2(PO4)4(H2O)2: Two new antimonous phosphates with distinct [Sb(PO4)2] structure types and enhanced birefringence. Inorg Chem, 2021, 60: 1957–1964

    Article  CAS  Google Scholar 

  51. Wang L, Wang H, Zhang D, et al. Centrosymmetric RbSnF2NO3 vs. noncentrosymmetric Rb2SbF3(NO3)2. Inorg Chem Front, 2021, 8: 3317–3324

    Article  CAS  Google Scholar 

  52. Yang F, Wang L, Ge Y, et al. K4Sb(SO4)3Cl: The first apatite-type sulfate ultraviolet nonlinear optical material with sharply enlarged birefringence. J Alloys Compd, 2020, 834: 155154

    Article  CAS  Google Scholar 

  53. Zhang D, Wang Q, Zheng T, et al. NH4Sb2(C2O4)F5: A novel UV nonlinear optical material synthesized in deep eutectic solvents. J Alloys Compd, 2022, 896: 162921

    Article  CAS  Google Scholar 

  54. Chen Y, Zhu T, Xiong Z, et al. An organic-inorganic hybrid birefringent material with diverse functional groups. Chem Commun, 2021, 57: 6668–6671

    Article  CAS  Google Scholar 

  55. Chen Y, Chen Z, Zhou Y, et al. An antimony(III) fluoride oxalate with large birefringence. Chem Eur J, 2021, 27: 4557–4560

    Article  CAS  Google Scholar 

  56. Liu Y, Liu X, Liu S, et al. An unprecedented antimony(III) borate with strong linear and nonlinear optical responses. Angew Chem Int Ed, 2020, 59: 7793–7796

    Article  CAS  Google Scholar 

  57. Guo J, Tudi A, Han S, et al. Sn2PO4I: An excellent birefringent material with giant optical anisotropy in non π-conjugated phosphate. Angew Chem Int Ed, 2021, 60: 24901–24904

    Article  CAS  Google Scholar 

  58. Lu J, Lian YK, Xiong L, et al. How to maximize birefringence and nonlinearity of π-conjugated cyanurates. J Am Chem Soc, 2019, 141: 16151–16159

    Article  CAS  Google Scholar 

  59. Song JL, Hu CL, Xu X, et al. A facile synthetic route to a new SHG material with two types of parallel π-conjugated planar triangular units. Angew Chem Int Ed, 2015, 54: 3679–3682

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22122106, 22071158, 21971171, and 21875146). Ok KM thanks the National Research Foundation of Korea (NRF) funded by the Ministry of Science and International Cooperation of Technology (2019R1A2C3005530).

Author information

Authors and Affiliations

Authors

Contributions

Zhang D carried out the experiments, performed the data processing, and wrote the manuscript. Wang Q performed the theoretical calculation of the crystals. Ok KM revised the manuscript. Zheng T, Cao L, Gao D, and Bi J offered help in analyzing the experimental data. Huang L designed the organization of the manuscript and revised the manuscript. Zou G guided and designed the experiment. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Ling Huang  (黄玲) or Guohong Zou  (邹国红).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Die Zhang is currently a master student at the School of Chemistry and Materials Science, Sichuan Normal University. She received a bachelor degree in chemistry from Leshan Normal University in 2016. Her research focuses on exploring new nonlinear optical materials.

Ling Huang graduated with a bachelor of science degree from the School of Chemistry, Northeast Normal University in 2008 and a doctor of science degree from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, in 2013. From 2013 to 2016, she worked at the New Materials Research Center of the Institute of Chemical Materials, Chinese Academy of Engineering Physics, and joined the School of Chemistry and Materials Science, Sichuan Normal University, in March 2016. She is engaged in designing new nonlinear optical crystal materials.

Guohong Zou graduated from the Central South University with a bachelor’s degree in 2008 and graduated from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, with a doctoral degree in 2013. From 2015 to 2017, he was engaged in postdoctoral research at Chung-Ang University. In November 2017, he joined Sichuan University as a professor. In 2021, he obtained the support of the National Science Fund for Excellent Young Scholars. He focuses on the structural design and controllable synthesis of new inorganic solid photoelectric crystal materials.

Supporting Information

40843_2022_2088_MOESM1_ESM.pdf

Cation-anion synergetic interactions achieving tunable birefringence in quasi-one-dimensional antimony(III) fluoride oxalates

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Wang, Q., Zheng, T. et al. Cation-anion synergetic interactions achieving tunable birefringence in quasi-one-dimensional antimony(III) fluoride oxalates. Sci. China Mater. 65, 3115–3124 (2022). https://doi.org/10.1007/s40843-022-2088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2088-0

Keywords

Navigation