Skip to main content
Log in

Adaptive strategies against water stress: a study comparing leaf morphoanatomy of rupicolous and epiphytic species of Gesneriaceae

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Rupicolous and epiphytic plants have evolved in search of environmental light conditions, throughout their evolution, the former thriving among rocks, and the latter growing non-parasitically on other plants (trees). However, while their habitats have provided sufficient light, they are also characterized by xeric conditions. This work compares leaf morphoanatomy between the rupicolous Sinningia bullata Chautems & M. Peixoto and the epiphytic Codonanthe gracilis (Mart.) Hanst in order to find insightful correlations in their adaptations to water stress. It also presents the first description of the anatomy of the leaf of S. bullata. In vivo leaf samples were cut and fixed for analysis under both optical and the scanning electronic microscopy. Both plants were observed to have dorsiventral and hypostomatic leaf. Anatomically, the plants share the same type of stomata complex, i.e., amphianisocytic, with collateral vascular bundles in between the spongy and palisade parenchymas. The presence of water storage tissue and conspicuous epicuticular wax and cuticle are evidence of some of the adaptations that these plants have made against water stress. Thus, while both plants show similarities of morphoanatomical adaptations that enhance their ability to thrive in spite of water stress, S. bullata has evolved additional adaptive strategies, such as convexities of the epidermis and the presence of long trichomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1–9
Fig. 10–18
Fig. 19–22

Similar content being viewed by others

References

  • Affonso P, Takeuchi C, Nakano RK (2014) Levantamento de Gesneriaceae Rich. & Juss. no Núcleo Curucutu, Parque Estadual da Serra do Mar, São Paulo, SP, Brasil. Hoehnea 41:563–572

    Article  Google Scholar 

  • Araujo AO, Chautems AJ (2015) Sinningia in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/listaBrasil/FichaPublicaTaxonUC/FichaPublicaTaxonUC.do?id=FB122418&action=print. Accessed 30 March 2015

  • Becker M, Kerstiens G, Schonherr J (1986) Water permeability of plant cuticle: permeance, diffusion and partition coefficients. Trees 1:54–60

    Article  CAS  Google Scholar 

  • Benzing DH (1990) Vascular epiphytes: general biology and related biota. Cambridge University, New York

    Book  Google Scholar 

  • Benzing DH (2012) Air plants: epiphytes and aerial gardens. Cornell University Press, Ithaca

    Google Scholar 

  • Brewer CA, Smith WK, Vogelmann TC (1991) Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant Cell Environ 14:955–962

    Article  Google Scholar 

  • Burbanck MP, Platt RB (1964) Granite outcrop communities of the Piedmont Plateu in Georgia. Ecology 45:292–306

    Article  Google Scholar 

  • Burke A (2002) Island: matrix relationships in Nama Karoo inselberg landscape part II. Are some inselbergs betters sources than others? Plant Ecol 158:41–48

    Article  Google Scholar 

  • Chautems A, Lopes TCC, Peixoto M, Rossini J (2010) Taxonomic revision of Sinningia Ness (Gesneriaceae) IV: six new species from Brazil a long overlooked taxon. Candollea 65:241–266

    Article  Google Scholar 

  • Costa AF (1982) Farmacognosia: farmacognosia experimental, vol 3, 2nd edn. Fundação Calouste Gulbenkian, Lisboa

    Google Scholar 

  • Coutinho LM (1962) Contribuições ao conhecimento da ecologia da Mata Pluvial Tropical. Faculdade de Filosofia e Ciências Literárias da USP—Brasil. Sep Bol Bot 257:1–219

    Google Scholar 

  • Cuzzuol GRF, Clippel JK (2009) Aspectos ecofisiológicos de Sinningia aghensis Chautems em condições de campo. Hoehnea 36:73–81

    Article  Google Scholar 

  • Dilcher DL (1974) Approaches to the indentification of angiosperm leaf remains. Bot Rev 40:1–157

    Article  Google Scholar 

  • Esau K (1974) Anatomia das plantas com sementes. Edgard Blücher, São Paulo

    Google Scholar 

  • Espirito Santo (2005) Decreto n. 1.499-R, de 14 de junho de 2005. Lista de Espécies Ameaçadas de Extinção no Espírito Santo. http://www.meioambiente.es.gov.br/default.asp. Accessed 12 Nov 2012

  • Fahn A, Cutler DF (1992) Xerophytes. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Freitas HMO (1997) Drought. In: Prasad MNV (ed) Plant Ecophysiology. Wiley, New York, pp 129–149

    Google Scholar 

  • Gentry AH, Dodson C (1987) Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19:149–156

    Article  Google Scholar 

  • Gerlach D (1984) Botanische Microtecnick. Georg Thieme, Stuttgart

    Google Scholar 

  • Ghanem ME et al (2010) Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress. J Plant Physiol 167:382–392

    Article  CAS  Google Scholar 

  • Gutschick VP (1999) Research reviews biotic and abiotic consequences of differences in leaf structure. New Phytol 143:3–18

    Article  Google Scholar 

  • Horridge GA, Tamm SL (1969) Critical point drying for scanning electron microscope study of ciliary motion. Science 163:817–818

    Article  CAS  PubMed  Google Scholar 

  • IBGE (2012) Cidades@ Florianópolis SC. http://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=420540. Accessed 27 Nov 2012

  • Johansen DA (1940) Plant Microtechnique. McGraw Hill Book, New York

    Google Scholar 

  • Kay QON, Daoud HS, Stirton CH (1981) Pigment distribution, light reflection and cell structure in petals. Bot J Linn Soc 83:57–84

    Article  CAS  Google Scholar 

  • Kerstiens G (1996) Signalling across the divide: a wider perspective of cuticular structure funtion relationships. Trends Plant Sci 1:125–129

    Article  Google Scholar 

  • Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. Universidade Rural do Rio de Janeiro, Seropédica

    Google Scholar 

  • Lambers H, Stuart F, Pons TL (1998) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Madison M (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2:1–13

    Google Scholar 

  • Mittermeier R, Scarano F (2013) Ameaças globais à biodiversidade de plantas. In: Martinelli G, Moraes MA (eds) Livro vermelho da flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp 20–23

    Google Scholar 

  • Moore HE (1973) A synopsis of the genus Codonanthe (Gesneriaceae). Baileya 19:4–33

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Keny J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nobel PS (1970) Plant cell physiology: a physicochemical approach. W. H. Freeman, San Francisco

    Google Scholar 

  • Onyia GOC, Gahan PB (1984) Esterase activity in tubers of various species of Discorea and the effects of chilling. Saussurea 15:61–69

    Google Scholar 

  • Perret M, Chautems A, Araujo AOd, Salamin N (2013) Temporal and spatial origin of Gesneriaceae in the new world inferred from plastid DNA sequences. Bot J Linn Soc 171:61–79

    Article  Google Scholar 

  • Phillips DL (1982) Life-forms of granite outcrop plants. Am Midl Nat 107:206–208

    Article  Google Scholar 

  • Reinert F (1998) Epiphytes: photosynthesis, water balance and nutrients. In: Scarano F, Franco AC (eds) Ecophysiological strategies of xerophytic and amphibious plants in the neotropics, vol IV. PPGE-UFRJ, Rio de Janeiro, pp 87–108

    Google Scholar 

  • Reinert F, Leal-Costa MV, Junqueira NE, Tavares ES (2013) Are sun- and shade-type anatomy required for the acclimation of Neoregelia cruenta? An Acad Bras Ciências 85:561–573

    Article  Google Scholar 

  • Rossini J (2010) Levantamento florístico das Gesneriaceae do município de Santa Teresa, Espírito Santo. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • Rudall P (1992) Anatomy of the flowering plants: an introduction to structure and development, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Safford HD, Martinelli G (2000) Southeast Brazil. In: Porembski S, Barthlott W (eds) Inselberg: biotic diversity of isolated rock outcrops in Tropical and Temperate regions, vol 146. Spring, Heidelberg, pp 339–389

    Chapter  Google Scholar 

  • Santa Catarina (1986) Gabinete de Planejamento e Coordenação Geral. Subchefia de Estatística. Atlas de Santa Catarina. Aerofoto Cruzeiro, Rio de Janeiro

  • Saylor WR (1978) The first intergeneric hybrid between Codonanthe and Nemathanthus (Gesneriaceae). Selbyana 5:1–3

    Google Scholar 

  • Skelton RP, Midgley JJ, Nyaga JM, Johnson SD, Cramer MD (2012) Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait? Aust J Bot 60:104–113

    Article  Google Scholar 

  • Souza LA (2003) Morfologia e anatomia vegetal: células, tecidos, órgãos e plântulas. UEPG, Ponta Grossa

    Google Scholar 

  • Szarzynski J (2000) Xeric Island. In: Porembski S, Barthlott W (eds) Inselberg: biotic diversity of isolated rock outcrops in Tropical and Temperate regions, vol 146. Springer, Heidelberg, pp 37–48

    Chapter  Google Scholar 

  • Unemoto LK, Faria RTd, Meneguce B, Assis AMd (2006) Estabelecimento de um protocolo para a propagação in vitro de rainha-do-abismo, Sinningia leucotricha (Hoehne) Moore - (Gesneriaceae). Acta Sci Agron 28:503–506

    Google Scholar 

  • Vogelmann TC (1993) Plant tissue optics. Annu Rev Plant Physiol Mol Biol 44:231–251

    Article  Google Scholar 

  • Vogelmann TC, Bornman JF, Yates DJ (1996) Focusing of light by leaf epidermal cells. Physiol Plant 98:43–56

    Article  CAS  Google Scholar 

  • Werker E (2000) Trichome diversity and development. In: Escobar C, Fenoll C (eds) Plant nematode interactions: a view on compatible interrelationships, vol 73. Academic Press, New York, pp 1–35

    Google Scholar 

  • Wiehler HA (1983) A synopsis of the neotropical Gesneriaceae. Selbyana 6:1–219

    Google Scholar 

  • Wikströem N, Kenrick P, Chase M (1999) Epiphytism and terrestrialization in tropical Huperzia (Lycopodiaceae). Plant Sist Evol 218:221–243

    Article  Google Scholar 

  • Wilkinson HP (1979) The plant surface. In: Metcalfe CR, Chalk L (eds) Anatomy of the Dicotyledons: systematic anatomy of the leaf and stem, vol 1. Clarendon Press, Oxford, pp 97–165

    Google Scholar 

  • Zotz G, Heitz P (2001) The physiological ecology of vascular epiphytes: current knowledge, open questions. J Exp Bot 52:2067–2078

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

My special thanks to D.Sc. Ademir Reis for his help with the field work. Financial support for this study was provided by the National Council for Scientific and Technological Development (CNPq) and the National Program in Support the Development of Botany sponsored by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES an entity of the Brazilian Government for the formation of human resources).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira-Dias, F., Santos, M. Adaptive strategies against water stress: a study comparing leaf morphoanatomy of rupicolous and epiphytic species of Gesneriaceae. Braz. J. Bot 38, 911–919 (2015). https://doi.org/10.1007/s40415-015-0180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-015-0180-8

Keywords

Navigation