Skip to main content

Advertisement

Log in

Dose management in conventional nuclear medicine imaging and PET

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

This review of the basic concepts of dose management in conventional nuclear medicine imaging and positron emission tomography focuses on methods for dose assessment, difficulties with image quality evaluation, need for clear image quality criteria and observer performance studies, studies on representative groups of patients contra individual patients, clinically applicable methods for dose reduction, including the use of diagnostic reference levels. The dose management in nuclear imaging requires more attention and there is a need for better contribution of new technology for individual patient dose management as well as for education and training of the multidisciplinary teams of nuclear medicine physicians, technologists and medical physicists, responsible for the investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rehani MM (2015) Looking into future: challenges in radiation protection in medicine. Radiat Prot Dosimetry 165(1–4):3–6

    Article  PubMed  CAS  Google Scholar 

  2. Willowson KP, Tapner M, Team Quest Investigator, Bailey DL (2015) A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres: the QUEST phantom study. Eur J Nucl Med Mol Imaging 42(8):1202–1222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. EANM Physics Committee, Busemann Sokole E, Plachcinska A, Britten A, EANM Working Group on Nuclear Medicine Instrumentation Quality Control, Lyra Georgosopoulou M, Tindale W, Klett R (2010) Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging 37(3):662–671

    Article  Google Scholar 

  4. Söderberg M, Mattsson S, Oddstig J, Uusijärvi-Lizana H, Valind S, Thorsson O, Garpered S, Prautzsch T, Tischenko O, Leide-Svegborn S (2012) Evaluation of image reconstruction methods for (123)I-MIBG-SPECT: a rank-order study. Acta Radiol 53(7):778–784

    Article  PubMed  Google Scholar 

  5. Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Noßke D, Riklund KA, Stabin M, Taylor D, Bolch W, Carlsson S, Eckerman K, Giussani A, Söderberg L, Valind S, Authors on Behalf of ICRP (2015) Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. ICRP publication 128. Ann ICRP 44(2S):1–321

    Google Scholar 

  6. Giussani A, Uusijärvi H (2011) Biokinetic models for radiopharmaceuticals. In: Cantone MC, Hoeschen C (eds) Radiation physics in nuclear medicine. Springer, Berlin, pp 233–255

    Chapter  Google Scholar 

  7. Eberlein U, Broer JH, Vandevoorde C, Santos P, Bardies M, Bacher K, Nosske D, Lassmann M (2011) Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine—a review. Eur J Nucl Med Mol Imaging 38(12):2269–2281

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Mattsson S (2015) Patient dosimetry in nuclear medicine. Radiat Prot Dosimetry 165(1–4):416–423

    Article  PubMed  Google Scholar 

  9. Lassmann M, Chiesa C, Flux G, Bardies M, EANM Dosimetry Committee (2011) EANM dosimetry committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging 38(1):192–200

    Article  PubMed  CAS  Google Scholar 

  10. Cristy M, Eckerman KF(1987) Specific absorbed fractions of energy at various ages from internal photon sources. ORNL/TM-8381 V1–V7, Oak Ridge National Laboratory, Oak Ridge

  11. ICRP (1975) Report of the task group on reference man. ICRP publication 23. Pergamon Press, Oxford

    Google Scholar 

  12. ICRP (2009) Adult reference computational phantoms. ICRP publication 110. Ann ICRP 39(2):1–165

    Article  Google Scholar 

  13. ICRP (2002) Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP publication 89. Ann ICRP 32(3–4):5–265

    Google Scholar 

  14. ICRP (2007) Recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP 37(2–4):1–332

    Google Scholar 

  15. ICRP (1991) 1990 Recommendations of the international commission on radiological protection. ICRP publication 60. Ann ICRP 21(1–3):1–210

  16. Zankl M, Schlattl H, Petoussi-Henss N, Hoeschen C (2012) Electron specific absorbed fractions for the adult male and female ICRP/ICRU reference computational phantoms. Phys Med Biol 57(14):4501–4526

    Article  PubMed  Google Scholar 

  17. Hadid L, Gardumi A, Desbree A (2013) Evaluation of absorbed and effective doses to patients from radiopharmaceuticals using the ICRP 110 reference computational phantoms and ICRP 103 formulation. Radiat Prot Dosimetry 156(2):141–159

    Article  PubMed  CAS  Google Scholar 

  18. Andersson M, Johansson L, Minarik D, Leide-Svegborn S, Mattsson S (2014) Effective dose to adult patients from 338 radiopharmaceuticals estimated using ICRP biokinetic data, ICRP/ICRU computational reference phantoms and ICRP 2007 tissue weighting factors. EJNMMI Phys 1:9. doi:10.1186/2197-7364-1-9

    Article  PubMed Central  PubMed  Google Scholar 

  19. Andersson M (2015) Erratum to: Effective dose to adult patients from 338 radiopharmaceuticals estimated using ICRP biokinetic data, ICRP/ICRU computational reference phantoms and ICRP 2007 tissue weighting factors. EJNMMI Phys 2:22. doi:10.1186/s40658-015-0121-4

    Article  PubMed Central  PubMed  Google Scholar 

  20. ICRP (2008) Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP publication 53. ICRP publication 106. Ann ICRP 38(1–2):1–197

    PubMed  CAS  Google Scholar 

  21. ICRP (1998) Radiation dose to patients from radiopharmaceuticals (addendum to ICRP publication 53). ICRP publication 80. Ann ICRP 28(3):1–126

    Article  Google Scholar 

  22. ICRP (1998) Radiation dose to patients from radiopharmaceuticals. ICRP publication 53. Ann ICRP 18(1–4):1–377

    Google Scholar 

  23. Stabin M, Farmer A (2012) The new generation dosimetry modeling code. J Nucl Med Abstr 53:585

    Google Scholar 

  24. Stabin M, Emmons MA, Segars P, Fernald M (2008) ICRP-89 based adult and pediatric phantom series. J Nucl Med Abstr 49:14

    Google Scholar 

  25. Walker RC, Smith GT, Liv E, Moore B, Clanton J, Stabin M (2013) Measured human dosimetry of 68 Ga-DOTATATE. J Nucl Med 54(6):855–860

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. ICRP (2007) Radiation protection in medicine. ICRP publication 105. Ann ICRP 37(6):1–63

    Article  Google Scholar 

  27. Mattsson S (2016) Need for individual cancer estimations in X-ray and nuclear medicine imaging. Radiat Prot Dosimetry (accepted)

  28. Moonen M, Jacobsson L (1997) Effect of administered activity on precision in the assessment of renal function using gamma camera renography. Nucl Med Commun 18(4):346–351

    Article  PubMed  CAS  Google Scholar 

  29. Perez M, Quevedo J, Diaz-Rizo O, Dopico R, Estévez A, Viamonte A (2002) Administered activity optimization in skeletal scanning using MDP labelled 99 m-Tc. ALASBIMN J 16(4):AJ16-5

    Google Scholar 

  30. McCready R, A’Hern R (1997) A more rational basis for determining the activities used for radionuclide imaging? Eur J Nucl Med 24(2):109–110

    Article  PubMed  CAS  Google Scholar 

  31. Dorbala S, Blankstein R, Skali H, Park MA, Fantony J, Mauceri C, Semer J, Moore SC, Di Carli MF (2015) Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging. J Nucl Med 56(4):592–599

    Article  PubMed  CAS  Google Scholar 

  32. Oddstig J, Hedeer F, Jögi J, Carlsson M, Hindorf C, Engblom H (2012) Reduced administered activity, reduced acquisition time, and preserved image quality for the new CZT camera. J Nucl Cardiol 20:38–44

    Article  PubMed  Google Scholar 

  33. Caobelli F, Ren Kaiser S, Thackeray J, Bengel F, Chieregato M, Soffientini A, Pizzocaro C, Savelli G, Galelli M, Paolo Guerra U (2014) IQ SPECT allows a significant reduction in administered dose and acquisition time for myocardial perfusion imaging: evidence from a phantom study. J Nucl Med 55(12):2064–2070

    Article  PubMed  Google Scholar 

  34. Surti S, Karp JS (2015) Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner. Phys Med Biol 60(13):5343–5358

    Article  PubMed  CAS  Google Scholar 

  35. Alessio AM, Sammer M, Phillips GS, Manchanda V, Mohr BC, Parisi MT (2011) Evaluation of optimal acquisition duration or injected activity for pediatric 18F-FDG PET/CT. J Nucl Med 52(7):1028–1034

    Article  PubMed  Google Scholar 

  36. Nakazato R, Berman DS, Hayes SW, Fish M, Padgett R, Xu Y, Lemley M, Baavour R, Roth N, Slomka PJ (2013) Myocardial perfusion imaging with a solid-state camera: simulation of a very low dose imaging protocol. J Nucl Med 54(3):373–379

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Buther F, Dawood M, Stegger L, Wubbeling F, Schafers M, Schober O, Schafers KP (2009) List mode-driven cardiac and respiratory gating in PET. J Nucl Med 50(5):674–681

    Article  PubMed  Google Scholar 

  38. Bajc M, Neilly JB, Miniati M, Schuemichen C, Meignan M, Jonson B, EANM Committee (2009) EANM guidelines for ventilation/perfusion scintigraphy: part 1. Pulmonary imaging with ventilation/perfusion single photon emission tomography. Eur J Nucl Med Mol Imaging 36(8):1356–1370

    Article  PubMed  CAS  Google Scholar 

  39. Parker JA, Coleman RE, Grady E, Royal HD, Siegel BA, Stabin MG, Sostman HD, Hilson AJ, Society of Nuclear Medicine (2012) SNM practice guideline for lung scintigraphy 4.0. J Nucl Med Technol 40(1):57–65

    Article  PubMed  Google Scholar 

  40. Gelfand MJ, Parisi MT, Treves ST, Pediatric Nuclear Medicine Dose Reduction Workgroup (2011) Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med 52(2):318–322

    Article  PubMed  Google Scholar 

  41. Vestergren E, Jacobsson L, Lind A, Sixt R, Mattsson S (1998) Administered activity of 99mTc-DMSA for kidney scintigraphy in children. Nucl Med Commun 19(7):695–701

    Article  PubMed  CAS  Google Scholar 

  42. Notghi A, Williams N, Smith N, Goyle S, Harding LK (2003) Relationship between myocardial counts and patient weight: adjusting the injected activity in myocardial perfusion scans. Nucl Med Commun 24(1):55–59

    Article  PubMed  CAS  Google Scholar 

  43. Sgouros G, Frey EC, Bolch WE, Wayson MB, Abadia AF, Treves ST (2011) An approach for balancing diagnostic image quality with cancer risk: application to pediatric diagnostic imaging of 99mTc-dimercaptosuccinic acid. J Nucl Med 52(12):1923–1929

    Article  PubMed Central  PubMed  Google Scholar 

  44. Sánchez-Jurado R, Devis M, Sanz R, Aquilar JE, del Puig Cózar M, Ferrer-Rebolleda J (2014) Whole-body PET/CT studies with lowered 18F-FDG doses: the influence of body mass index in dose reduction. J Nucl Med Technol 42(1):62–67

    Article  PubMed  Google Scholar 

  45. Botkin CD, Osman MM (2007) Prevalence, challenges, and solutions for 18F-FDG PET studies of obese patients: a technologist’s perspective. J Nucl Med Technol 35(2):80–83

    Article  PubMed  Google Scholar 

  46. Cheng DW, Ersahin D, Staib LH, Della Latta D, Giorgetti A, d’Errico F (2014) Using SUV as a guide to 18F-FDG dose reduction. J Nucl Med 55(12):1998–2002

    Article  PubMed  CAS  Google Scholar 

  47. Clark LD, Stabin MG, Fernald MJ, Brill AB (2010) Changes in radiation dose with variations in human anatomy: moderately and severely obese adults. J Nucl Med 51(6):929–932

    Article  PubMed Central  PubMed  Google Scholar 

  48. Marine PM, Stabin MG, Fernald MJ, Brill AB (2010) Changes in radiation dose with variations in human anatomy: larger and smaller normal-stature adults. J Nucl Med 51(5):806–811

    Article  PubMed Central  PubMed  Google Scholar 

  49. Segars Wp, Bond J, Frush J, Hon S, Eckersley C, Williams CH, Feng J, Tward DJ, Ratnanather JT, Miller MI, Frush D, Samei E (2013) Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization. Med Phys 40(4):043701-1–043701-11

    Article  Google Scholar 

  50. Swedish Radiation Safety Authority (2015) Isotopstatistik för nukleärmedicinsk verksamhet (in Swedish). SSM. http://apps.stralsakerhetsmyndigheten.se/isotop/index_nomenu.asp

  51. Del Sole A, Lecchi M, Lucignani G (2015) Variability of [18F]FDG administered activities among patients undergoing PET examinations: an international multicentre survey. Radiat Prot Dosimetry. doi:10.1093/rpd/ncv345

    PubMed  Google Scholar 

  52. ICRP (2001) Diagnostic reference levels in medical imaging: review and additional advice. Ann ICRP 31(4):33–52

    Google Scholar 

  53. ARSAC (Administration of Radioactive Substances Advisory Committee) Notes for guidance on the clinical administration of radiopharmaceuticals and use of sealed radioactive sources, March 2006, Revised 2006, 2007 (twice), 2011 and 2014. Public Health England, Department of Health. https://www.gov.uk/government/publications/arsac-notes-for-guidance

  54. Vogiatzi S, Kipouros P, Chobis M (2011) Establishment of dose reference levels for nuclear medicine in Greece. Radiat Prot Dosimetry 147(1–2):237–239

    Article  PubMed  CAS  Google Scholar 

  55. Nosske D, Minkov V, Brix G (2004) Establishment and application of diagnostic reference levels for nuclear medicine procedures in Germany. Nuklearmedizin 43(3):79–84

    PubMed  CAS  Google Scholar 

  56. Korpela H, Bly R, Vassileva J, Ingilizova K, Stoyanova T, Kostadinova I, Slavchev A (2010) Recently revised diagnostic reference levels in nuclear medicine in Bulgaria and in Finland. Radiat Prot Dosimetry 139(1–3):317–320

    Article  PubMed  CAS  Google Scholar 

  57. Etard C, Celier D, Roch P, Aubert B (2012) National survey of patient doses from whole-body FDG PET-CT examinations in France in 2011. Radiat Prot Dosimetry 152(4):334–338

    Article  PubMed  Google Scholar 

  58. Gray L, Torreggiani W, O’Reilly G (2008) Paediatric diagnostic reference levels in nuclear medicine imaging in Ireland. Br J Radiol 81(971):918–919

    Article  PubMed  CAS  Google Scholar 

  59. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Visser E, Hoekstra CJ, Pruim J, Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42(2):328–354

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. European Commission (1999) Guidance on diagnostic reference levels (DRLs) for medical exposures. Radiation Protection 109, Directorate-General Environment, Nuclear Safety and Civil Protection

  61. Roch P, Aubert B (2013) French diagnostic reference levels in diagnostic radiology, computed tomography and nuclear medicine: 2004–2008 review. Radiat Prot Dosimetry 154(1):52–75

    Article  PubMed  CAS  Google Scholar 

  62. Rehani MM (2015) Limitations of diagnostic reference level (DRL) and introduction of acceptable quality dose (AQD). Br J Radiol 88(1045):20140344. Published online 2014 Dec 15. doi:10.1259/bjr.20140344

  63. ICRP (1987) Protection of the patient in nuclear medicine (and statement from the 1987 Como meeting of ICRP). ICRP publication 52. Ann ICRP 17(4):1–37

  64. Thomas SR, Stabin MG, Chen CT, Samaratunga RC (1999) MIRD pamphlet no. 14 revised: a dynamic urinary bladder model for radiation dose calculations. Task Group of the MIRD Committee, Society of Nuclear Medicine. J Nucl Med 40(4):102S–123S

    PubMed  CAS  Google Scholar 

  65. Andersson M, Minarik D, Johansson L, Mattsson S, Leide-Svegborn S (2014) Improved estimates of the radiation absorbed dose to the urinary bladder wall. Phys Med Biol 59(9):2173–2182

    Article  PubMed  Google Scholar 

  66. Cloutier RJ, Smith SA, Watson EE, Snyder WS, Warner GG (1973) Dose to the fetus from radionuclides in the bladder. Health Phys 25(2):147–161

    Article  PubMed  CAS  Google Scholar 

  67. Joshi AD, Pontecorvo MJ, Adler L, Stabin MG, Skovronsky DM, Carpenter AP, Mintun MA, Florbetapir F Study Investigators (2014) Radiation dosimetry of florbetapir F18. EJNMMI Res 4(1):4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Koole M, Lewis DM, Buckley C, Nelissen N, Vandenbulcke M, Brooks DJ, Vandenberghe R, Van Laere K (2009) Whole-body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging. J Nucl Med 50(5):818–822

    Article  PubMed  CAS  Google Scholar 

  69. Lin KJ, Hsu WC, Hsiao IT, Wey SP, Jin LW, Skovronsky D, Wai YY, Chang HP, Lo CW, Yao CH, Yen TC, Kung MP (2010) Whole-body biodistribution and brain PET imaging with [18F]AV-45, a novel amyloid imaging agent—a pilot study. Nucl Med Biol 37(4):497–508

    Article  PubMed  CAS  Google Scholar 

  70. O’Keefe GJ, Saunder TH, Ng S, Ackerman U, Tochon-Danguy HJ, Chan JG, Gong S, Dyrks T, Lindemann S, Holl G, Dinkelborg L, Villemagne V, Rowe C (2009) Radiation dosimetry of beta-amyloid tracers 11C-PiB and 18F-BAY94-9172. J Nucl Med 50(2):309–315

    Article  PubMed  Google Scholar 

  71. ICRP (1993) Age-dependent doses to members of the public from intake of radionuclides—part 2. Ingestion dose coefficients. ICRP publication 67. Ann ICRP 23(3–4):1–167

    Google Scholar 

  72. Mattsson S, Andersson M, Söderberg M (2015) Technological advances in hybrid imaging and impact on dose. Radiat Prot Dosimetry 165(1–4):410–415

    Article  PubMed  Google Scholar 

  73. Gelfand MJ, Thomas SR, Kereiakes JG (1983) Absorbed radiation dose from routine imaging of the skeleton in children. Ann Radiol (Paris) 26(5):421–423

    CAS  Google Scholar 

  74. ICRP (2000) Pregnancy and medical radiation. ICRP publication 84. Ann ICRP 30(1):1–39

  75. Xie T, Zaidi H (2014) Fetal and maternal absorbed dose estimates for positron-emitting molecular imaging probes. J Nucl Med 55(9):1459–1466

    Article  PubMed  CAS  Google Scholar 

  76. Zanotti-Fregonara P, Laforest R, Wallis JW (2015) Fetal radiation dose from 18F-FDG in pregnant patients imaged with PET, PET/CT, and PET/MR. J Nucl Med 56(8):1218–1222

    Article  PubMed  CAS  Google Scholar 

  77. Rehani MM (2015) Tracking of examination and dose: overview. Radiat Prot Dosimetry 165(1–4):50–52

    Article  PubMed  CAS  Google Scholar 

Download references

Authors’ contribution

M. Andersson: literature search and review, manuscript writing. S. Mattsson: content planning, literature search and review, manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Mattsson.

Ethics declarations

Conflict of interest

Sören Mattsson and Martin Andersson declare that they have no conflict of interest.

Human and animal studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, M., Mattsson, S. Dose management in conventional nuclear medicine imaging and PET. Clin Transl Imaging 4, 21–30 (2016). https://doi.org/10.1007/s40336-015-0150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-015-0150-y

Keywords

Navigation