Skip to main content
Log in

Born to Protect: Leveraging BDNF Against Cognitive Deficit in Alzheimer’s Disease

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is a chronic neurodegenerative devastating disorder affecting a high percentage of the population over 65 years of age and causing a relevant emotional, social, and economic burden. Clinically, it is characterized by a prominent cognitive deficit associated with language and behavioral impairments. The molecular pathogenesis of Alzheimer’s disease is multifaceted and involves changes in neurotransmitter levels together with alterations of inflammatory, oxidative, hormonal, and synaptic pathways, which may represent a drug target for both prevention and treatment; however, an effective treatment for Alzheimer’s disease still represents an unmet goal. As neurotrophic factors participate in the modulation of the above-mentioned pathways, they have been highlighted as critical contributors of Alzheimer’s disease etiology, whose modulation might be beneficial for Alzheimer’s disease. We focused on the neurotrophin brain-derived neurotrophic factor, providing several lines of evidence pointing to brain-derived neurotrophic factor as a plausible endophenotype of cognitive deficits in Alzheimer’s disease, illustrating some of the most recent possibilities to modulate the expression of this neurotrophin in the brain in an attempt to ameliorate cognition and delay the progression of Alzheimer’s disease. This review shows that otherwise disparate pharmacologic or non-pharmacologic approaches converge on brain-derived neurotrophic factor, providing a means whereby apparently unrelated medical approaches may nevertheless produce similar synaptic and cognitive outcomes in Alzheimer’s disease pathogenesis, suggesting that brain-derived neurotrophic factor-based synaptic repair may represent a modifying strategy to ameliorate cognition in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fumagalli F, Racagni G, Riva MA. The expanding role of BDNF: a therapeutic target for Alzheimer’s disease? Pharmacogenom J. 2006;6(1):8–15.

    CAS  Google Scholar 

  2. Poo MM. Neurotrophins as synaptic modulators. Nat Rev Neurosci. 2001;2(1):24–32.

    CAS  PubMed  Google Scholar 

  3. Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol. 2005;76(2):99–125.

    CAS  PubMed  Google Scholar 

  4. Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019;13:363.

    PubMed  PubMed Central  Google Scholar 

  5. Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T. Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res. 2007;85(3):525–35.

    CAS  PubMed  Google Scholar 

  6. Chiaruttini C, Sonego M, Baj G, Simonato M, Tongiorgi E. BDNF mRNA splice variants display activity-dependent targeting to distinct hippocampal laminae. Mol Cell Neurosci. 2008;37(1):11–9.

    CAS  PubMed  Google Scholar 

  7. Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion: current facts and future prospects. Prog Neurobiol. 2003;69(5):341–74.

    CAS  PubMed  Google Scholar 

  8. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci. 2005;6(8):603–14.

    CAS  PubMed  Google Scholar 

  9. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiao SS, Shen LL, Zhu C, Bu XL, Liu YH, Liu CH, et al. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Transl Psychiatry. 2016;6(10):e907.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaminari A, Giannakas N, Tzinia A, Tsilibary EC. Overexpression of matrix metalloproteinase-9 (MMP-9) rescues insulin-mediated impairment in the 5XFAD model of Alzheimer’s disease. Sci Rep. 2017;7(1):683.

    PubMed  PubMed Central  Google Scholar 

  12. Devi L, Ohno M. TrkB reduction exacerbates Alzheimer’s disease-like signaling aberrations and memory deficits without affecting beta-amyloidosis in 5XFAD mice. Transl Psychiatry. 2015;5(5):e562.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Murer MG, Boissiere F, Yan Q, Hunot S, Villares J, Faucheux B, et al. An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer’s disease. Neuroscience. 1999;88(4):1015–32.

    CAS  PubMed  Google Scholar 

  14. Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev. 2008;59(1):201–20.

    CAS  PubMed  Google Scholar 

  15. Burbach GJ, Hellweg R, Haas CA, Del Turco D, Deicke U, Abramowski D, et al. Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice. J Neurosci. 2004;24(10):2421–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schulte-Herbruggen O, Eckart S, Deicke U, Kuhl A, Otten U, Danker-Hopfe H, et al. Age-dependent time course of cerebral brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 in APP23 transgenic mice. J Neurosci Res. 2008;86(12):2774–83.

    CAS  PubMed  Google Scholar 

  17. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron. 1991;7(5):695–702.

    CAS  PubMed  Google Scholar 

  18. Murray KD, Gall CM, Jones EG, Isackson PJ. Differential regulation of brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase messenger RNA expression in Alzheimer’s disease. Neuroscience. 1994;60(1):37–48.

    CAS  PubMed  Google Scholar 

  19. Ferrer I, Marin C, Rey MJ, Ribalta T, Goutan E, Blanco R, et al. BDNF and full-length and truncated TrkB expression in Alzheimer disease: implications in therapeutic strategies. J Neuropathol Exp Neurol. 1999;58(7):729–39.

    CAS  PubMed  Google Scholar 

  20. Ventriglia M, Zanardini R, Bonomini C, Zanetti O, Volpe D, Pasqualetti P, et al. Serum brain-derived neurotrophic factor levels in different neurological diseases. Biomed Res Int. 2013;2013:901082.

    PubMed  PubMed Central  Google Scholar 

  21. Leyhe T, Stransky E, Eschweiler GW, Buchkremer G, Laske C. Increase of BDNF serum concentration during donepezil treatment of patients with early Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci. 2008;258(2):124–8.

    CAS  PubMed  Google Scholar 

  22. Platenik J, Fisar Z, Buchal R, Jirak R, Kitzlerova E, Zverova M, Raboch J. GSK3beta, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog Neuropsychopharmacol Biol Psychiatry. 2014;3(50):83–93.

    Google Scholar 

  23. Laske C, Stransky E, Leyhe T, Eschweiler GW, Maetzler W, Wittorf A, et al. BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J Psychiatr Res. 2007;41(5):387–94.

    PubMed  Google Scholar 

  24. Zhang J, Sokal I, Peskind ER, Quinn JF, Jankovic J, Kenney C, et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am J Clin Pathol. 2008;129(4):526–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Diniz BS, Teixeira AL. Brain-derived neurotrophic factor and Alzheimer’s disease: physiopathology and beyond. Neuromol Med. 2011;13(4):217–22.

    CAS  Google Scholar 

  26. Durany N, Michel T, Kurt J, Cruz-Sanchez FF, Cervas-Navarro J, Riederer P. Brain-derived neurotrophic factor and neurotrophin-3 levels in Alzheimer’s disease brains. Int J Dev Neurosci. 2000;18(8):807–13.

    CAS  PubMed  Google Scholar 

  27. Corrêa MS, de Lima DB, Giacobbo BL, Vedovelli K, Argimon IIL, Bromberg E. Mental health in familial caregivers of Alzheimer’s disease patients: are the effects of chronic stress on cognition inevitable? Stress. 2019;22(1):83–92.

    PubMed  Google Scholar 

  28. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–69.

    CAS  PubMed  Google Scholar 

  29. Lim YY, Villemagne VL, Laws SM, Ames D, Pietrzak RH, Ellis KA, Australian Imaging, Biomarkers and Lifestyle (AIBL) Research Group, et al. BDNF Val66Met, Aβ amyloid, and cognitive decline in preclinical Alzheimer’s disease. Neurobiol Aging. 2013;34(11):2457–64.

    CAS  PubMed  Google Scholar 

  30. Park CH, Kim J, Namgung E, Lee DW, Kim GH, Kim M, et al. The BDNF Val66Met polymorphism affects the vulnerability of the brain structural network. Front Hum Neurosci. 2017;11:400.

    PubMed  PubMed Central  Google Scholar 

  31. Boots EA, Schultz SA, Clark LR, Racine AM, Darst BF, Koscik RL, et al. BDNF Val66Met predicts cognitive decline in the Wisconsin Registry for Alzheimer’s prevention. Neurology. 2017;88(22):2098–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lim YY, Hassenstab J, Cruchaga C, Goate A, Fagan AM, Benzinger TL, Dominantly Inherited Alzheimer Network, et al. BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer’s disease. Brain. 2016;139(Pt 10):2766–77.

    PubMed  PubMed Central  Google Scholar 

  33. Olin D, MacMurray J, Comings DE. Risk of late-onset Alzheimer’s disease associated with BDNF C270T polymorphism. Neurosci Lett. 2005;381(3):275–8.

    CAS  PubMed  Google Scholar 

  34. Harris SE, Fox H, Wright AF, Hayward C, Starr JM, Whalley LJ, et al. The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills. Mol Psychiatry. 2006;11(5):505–13.

    CAS  PubMed  Google Scholar 

  35. Anastasia A, Deinhardt K, Chao MV, Will NE, Irmady K, Lee FS, et al. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun. 2013;4:2490.

    PubMed  PubMed Central  Google Scholar 

  36. Peng S, Wuu J, Mufson EJ, Fahnestock M. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem. 2005;93(6):1412–21.

    CAS  PubMed  Google Scholar 

  37. Fahnestock M, Garzon D, Holsinger RM, Michalski B. Neurotrophic factors and Alzheimer’s disease: are we focusing on the wrong molecule? J Neural Transm Suppl. 2002;62:241–52.

    CAS  Google Scholar 

  38. Costantini C, Weindruch R, Della Valle G, Puglielli L. A TrkA-to-p75NTR molecular switch activates amyloid beta-peptide generation during aging. Biochem J. 2005;391(Pt 1):59–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gerenu G, Martisova E, Ferrero H, Carracedo M, Rantamaki T, Ramirez MJ, et al. Modulation of BDNF cleavage by plasminogen-activator inhibitor-1 contributes to Alzheimer’s neuropathology and cognitive deficits. Biochim Biophys Acta Mol Basis Dis. 2017;1863(4):991–1001.

    CAS  PubMed  Google Scholar 

  40. Chen J, Zhang T, Jiao S, Zhou X, Zhong J, Wang Y, et al. proBDNF accelerates brain amyloid-beta deposition and learning and memory impairment in APPswePS1dE9 transgenic mice. J Alzheimers Dis. 2017;59(3):941–9.

    CAS  PubMed  Google Scholar 

  41. Fleitas C, Pinol-Ripoll G, Marfull P, Rocandio D, Ferrer I, Rampon C, et al. proBDNF is modified by advanced glycation end products in Alzheimer’s disease and causes neuronal apoptosis by inducing p75 neurotrophin receptor processing. Mol Brain. 2018;11(1):68.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med. 2004;10(Suppl):S42–50.

    PubMed  Google Scholar 

  43. Poduslo JF, Curran GL. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res. 1996;36(2):280–6.

    CAS  PubMed  Google Scholar 

  44. Thorne RG, Frey WH 2nd. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet. 2001;40(12):907–46.

    CAS  PubMed  Google Scholar 

  45. Price RD, Milne SA, Sharkey J, Matsuoka N. Advances in small molecules promoting neurotrophic function. Pharmacol Ther. 2007;115(2):292–306.

    CAS  PubMed  Google Scholar 

  46. Xu LZ, Li BQ, Jia JP. DAPK1: a novel pathology and treatment target for Alzheimer’s disease. Mol Neurobiol. 2019;56(4):2838–44.

    CAS  PubMed  Google Scholar 

  47. Atasoy IL, Dursun E, Gezen-Ak D, Metin-Armagan D, Ozturk M, Yilmazer S. Both secreted and the cellular levels of BDNF attenuated due to tau hyperphosphorylation in primary cultures of cortical neurons. J Chem Neuroanat. 2017;80:19–26.

    CAS  PubMed  Google Scholar 

  48. Skaper SD. Peptide mimetics of neurotrophins and their receptors. Curr Pharm Des. 2011;17(25):2704–18.

    CAS  PubMed  Google Scholar 

  49. Cardenas-Aguayo Mdel C, Kazim SF, Grundke-Iqbal I, Iqbal K. Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures. PLoS One. 2013;8(1):e53596.

    PubMed  Google Scholar 

  50. Bolognin S, Blanchard J, Wang X, Basurto-Islas G, Tung YC, Kohlbrenner E, et al. An experimental rat model of sporadic Alzheimer’s disease and rescue of cognitive impairment with a neurotrophic peptide. Acta Neuropathol. 2012;123(1):133–51.

    CAS  PubMed  Google Scholar 

  51. Bolognin S, Buffelli M, Puolivali J, Iqbal K. Rescue of cognitive-aging by administration of a neurogenic and/or neurotrophic compound. Neurobiol Aging. 2014;35(9):2134–46.

    CAS  PubMed  Google Scholar 

  52. Kazim SF, Blanchard J, Dai CL, Tung YC, LaFerla FM, Iqbal IG, et al. Disease modifying effect of chronic oral treatment with a neurotrophic peptidergic compound in a triple transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 2014;71:110–30.

    CAS  PubMed  Google Scholar 

  53. Kazim SF, Blanchard J, Bianchi R, Iqbal K. Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer’s-like memory deficits in the Ts65Dn mouse model of Down syndrome. Sci Rep. 2017;3(7):45561.

    Google Scholar 

  54. Bertram JP, Rauch MF, Chang K, Lavik EB. Using polymer chemistry to modulate the delivery of neurotrophic factors from degradable microspheres: delivery of BDNF. Pharm Res. 2010;27(1):82–91.

    CAS  PubMed  Google Scholar 

  55. Li Y, Li Y, Ji W, Lu Z, Liu L, Shi Y, et al. Positively charged polyprodrug amphiphiles with enhanced drug loading and reactive oxygen species-responsive release ability for traceable synergistic therapy. J Am Chem Soc. 2018;140(11):4164–71.

    CAS  PubMed  Google Scholar 

  56. de Pins B, Cifuentes-Diaz C, Farah AT, Lopez-Molina L, Montalban E, Sancho-Balsells A, et al. Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5XFAD mouse model of Alzheimer disease. J Neurosci. 2019;39(13):2441–58.

    PubMed  PubMed Central  Google Scholar 

  57. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26(40):10129–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Esposito M, Sherr GL. Epigenetic modifications in Alzheimer’s neuropathology and therapeutics. Front Neurosci. 2019;13:476.

    PubMed  PubMed Central  Google Scholar 

  59. Janczura KJ, Volmar CH, Sartor GC, Rao SJ, Ricciardi NR, Lambert G, et al. Inhibition of HDAC3 reverses Alzheimer’s disease-related pathologies in vitro and in the 3 × Tg-AD mouse model. Proc Natl Acad Sci USA. 2018;115(47):E11148–57.

    CAS  PubMed  Google Scholar 

  60. Li W, Li X, Xin X, Kan PC, Yan Y. MicroRNA-613 regulates the expression of brain-derived neurotrophic factor in Alzheimer’s disease. Biosci Trends. 2016;10(5):372–7.

    CAS  PubMed  Google Scholar 

  61. Liu Z, Wang C, Wang X, Xu S. Therapeutic effects of transplantation of As-MiR-937-expressing mesenchymal stem cells in murine model of Alzheimer’s disease. Cell Physiol Biochem. 2015;37(1):321–30.

    PubMed  Google Scholar 

  62. Eremenko E, Mittal K, Berner O, Kamenetsky N, Nemirovsky A, Elyahu Y, et al. BDNF-producing, amyloid beta-specific CD4 T cells as targeted drug-delivery vehicles in Alzheimer’s disease. EBioMedicine. 2019;43:424–34.

    PubMed  PubMed Central  Google Scholar 

  63. Zheng H, Niu S, Zhao H, Li S, Jiao J. Donepezil improves the cognitive impairment in a tree shrew model of Alzheimer’s disease induced by amyloid-beta1-40 via activating the BDNF/TrkB signal pathway. Metab Brain Dis. 2018;33(6):1961–74.

    CAS  PubMed  Google Scholar 

  64. Tanqueiro SR, Ramalho RM, Rodrigues TM, Lopes LV, Sebastiao AM, Diogenes MJ. Inhibition of NMDA receptors prevents the loss of BDNF function induced by amyloid beta. Front Pharmacol. 2018;9:237.

    PubMed  PubMed Central  Google Scholar 

  65. Devi L, Ohno M. 7,8-Dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2012;37(2):434–44.

    CAS  PubMed  Google Scholar 

  66. Zhang Z, Liu X, Schroeder JP, Chan CB, Song M, Yu SP, et al. 7,8-Dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2014;39(3):638–50.

    PubMed  Google Scholar 

  67. Chen C, Li XH, Zhang S, Tu Y, Wang YM, Sun HT. 7,8-Dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction. Rejuvenation Res. 2014;17(3):249–54.

    PubMed  Google Scholar 

  68. Chen C, Wang Z, Zhang Z, Liu X, Kang SS, Zhang Y, et al. The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer’s disease. Proc Natl Acad Sci USA. 2018;115(3):578–83.

    CAS  PubMed  Google Scholar 

  69. Gao L, Tian M, Zhao HY, Xu QQ, Huang YM, Si QC, et al. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer’s disease. J Neurochem. 2016;136(3):620–36.

    CAS  PubMed  Google Scholar 

  70. Devanand DP, Strickler JG, Huey ED, Crocco E, Forester BP, Husain MM, et al. Lithium treatment for agitation in Alzheimer’s disease (Lit-AD): clinical rationale and study design. Contemp Clin Trials. 2018;71:33–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nunes MA, Schowe NM, Monteiro-Silva KC, Baraldi-Tornisielo T, Souza SI, Balthazar J, et al. Chronic microdose lithium treatment prevented memory loss and neurohistopathological changes in a transgenic mouse model of Alzheimer’s disease. PLoS One. 2015;10(11):e0142267.

    PubMed  PubMed Central  Google Scholar 

  72. Tempier A, He J, Zhu S, Zhang R, Kong L, Tan Q, et al. Quetiapine modulates conditioned anxiety and alternation behavior in Alzheimer’s transgenic mice. Curr Alzheimer Res. 2013;10(2):199–206.

    CAS  PubMed  Google Scholar 

  73. Luo G, Huang Y, Jia B, Zhang X, Mo D, Ma N, et al. Quetiapine prevents Aβ25-35-induced cell death in cultured neuron by enhancing brain-derived neurotrophic factor release from astrocyte. Neuroreport. 2018;29(2):92–8.

    CAS  PubMed  Google Scholar 

  74. Choi Y, Jeong HJ, Liu QF, Oh ST, Koo BS, Kim Y, et al. Clozapine improves memory impairment and reduces Aβ level in the Tg-APPswe/PS1dE9 mouse model of Alzheimer’s disease. Mol Neurobiol. 2017;54(1):450–60.

    CAS  PubMed  Google Scholar 

  75. Park SY, Shin HK, Lee WS, Bae SS, Kim K, Hong KW, et al. Neuroprotection by aripiprazole against beta-amyloid-induced toxicity by P-CK2α activation via inhibition of GSK-3beta. Oncotarget. 2017;8(66):110380–91.

    PubMed  PubMed Central  Google Scholar 

  76. Palop JJ, Mucke L. Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol. 2009;66(4):435–40.

    PubMed  PubMed Central  Google Scholar 

  77. Ziyatdinova S, Gurevicius K, Kutchiashvili N, Bolkvadze T, Nissinen J, Tanila H, et al. Spontaneous epileptiform discharges in a mouse model of Alzheimer’s disease are suppressed by antiepileptic drugs that block sodium channels. Epilepsy Res. 2011;94(1–2):75–85.

    CAS  PubMed  Google Scholar 

  78. Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci USA. 2012;109(42):E2895–903.

    CAS  PubMed  Google Scholar 

  79. Zhang MY, Zheng CY, Zou MM, Zhu JW, Zhang Y, Wang J, et al. Lamotrigine attenuates deficits in synaptic plasticity and accumulation of amyloid plaques in APP/PS1 transgenic mice. Neurobiol Aging. 2014;35(12):2713–25.

    CAS  PubMed  Google Scholar 

  80. Aboukhatwa M, Dosanjh L, Luo Y. Antidepressants are a rational complementary therapy for the treatment of Alzheimer’s disease. Mol Neurodegener. 2010;12(5):10.

    Google Scholar 

  81. Mowla A, Mosavinasab M, Haghshenas H, Borhani Haghighi A. Does serotonin augmentation have any effect on cognition and activities of daily living in Alzheimer’s dementia? A double-blind, placebo-controlled clinical trial. J Clin Psychopharmacol. 2007;27(5):484–7.

    CAS  PubMed  Google Scholar 

  82. Ren QG, Wang YJ, Gong WG, Xu L, Zhang ZJ. Escitalopram ameliorates tau hyperphosphorylation and spatial memory deficits induced by protein kinase A activation in Sprague Dawley rats. J Alzheimers Dis. 2015;47(1):61–71.

    CAS  PubMed  Google Scholar 

  83. Ibrahim WW, Abdelkader NF, Ismail HM, Khattab MM. Escitalopram ameliorates cognitive impairment in d-galactose-injected ovariectomized rats: modulation of JNK, GSK-3beta, and ERK signalling pathways. Sci Rep. 2019;9(1):10056.

    PubMed  PubMed Central  Google Scholar 

  84. Ren QG, Wang YJ, Gong WG, Zhou QD, Xu L, Zhang ZJ. Escitalopram ameliorates forskolin-induced tau hyperphosphorylation in HEK239/tau441 cells. J Mol Neurosci. 2015;56(2):500–8.

    CAS  PubMed  Google Scholar 

  85. Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel WD, Sathyan A, et al. Serotonin signaling is associated with lower amyloid-beta levels and plaques in transgenic mice and humans. Proc Natl Acad Sci USA. 2011;108(36):14968–73.

    CAS  PubMed  Google Scholar 

  86. Chadwick W, Mitchell N, Caroll J, Zhou Y, Park SS, Wang L, et al. Amitriptyline-mediated cognitive enhancement in aged 3 × Tg Alzheimer’s disease mice is associated with neurogenesis and neurotrophic activity. PLoS One. 2011;6(6):e21660.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jin L, Gao LF, Sun DS, Wu H, Wang Q, Ke D, et al. Long-term ameliorative effects of the antidepressant fluoxetine exposure on cognitive deficits in 3 × TgAD Mice. Mol Neurobiol. 2017;54(6):4160–71.

    CAS  PubMed  Google Scholar 

  88. Sun DS, Gao LF, Jin L, Wu H, Wang Q, Zhou Y, et al. Fluoxetine administration during adolescence attenuates cognitive and synaptic deficits in adult 3 × TgAD mice. Neuropharmacology. 2017;126:200–12.

    CAS  PubMed  Google Scholar 

  89. Park J, Lee SY, Shon J, Kim K, Lee HJ, Kim KA, et al. Adalimumab improves cognitive impairment, exerts neuroprotective effects and attenuates neuroinflammation in an Aβ1-40-injected mouse model of Alzheimer’s disease. Cytotherapy. 2019;21(6):671–82.

    CAS  PubMed  Google Scholar 

  90. Utkan T, Yazir Y, Karson A, Bayramgurler D. Etanercept improves cognitive performance and increases eNOS and BDNF expression during experimental vascular dementia in streptozotocin-induced diabetes. Curr Neurovasc Res. 2015;12(2):135–46.

    CAS  PubMed  Google Scholar 

  91. Tobinick EL, Gross H. Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. J Neuroinflamm. 2008;9(5):2.

    Google Scholar 

  92. Kim DH, Choi SM, Jho J, Park MS, Kang J, Park SJ, et al. Infliximab ameliorates AD-associated object recognition memory impairment. Behav Brain Res. 2016;15(311):384–91.

    Google Scholar 

  93. Sahin TD, Karson A, Balci F, Yazir Y, Bayramgurler D, Utkan T. TNF-alpha inhibition prevents cognitive decline and maintains hippocampal BDNF levels in the unpredictable chronic mild stress rat model of depression. Behav Brain Res. 2015;1(292):233–40.

    Google Scholar 

  94. Magistretti PJ, Geisler FH, Schneider JS, Li PA, Fiumelli H, Sipione S. Gangliosides: treatment avenues in neurodegenerative disease. Front Neurol. 2019;10:859.

    PubMed  PubMed Central  Google Scholar 

  95. Kracun I, Kalanj S, Talan-Hranilovic J, Cosovic C. Cortical distribution of gangliosides in Alzheimer’s disease. Neurochem Int. 1992;20(3):433–8.

    CAS  PubMed  Google Scholar 

  96. Barrier L, Ingrand S, Damjanac M, Rioux Bilan A, Hugon J, Page G. Genotype-related changes of ganglioside composition in brain regions of transgenic mouse models of Alzheimer’s disease. Neurobiol Aging. 2007;28(12):1863–72.

    CAS  PubMed  Google Scholar 

  97. Brooksbank BW, McGovern J. Gangliosides in the brain in adult Down’s syndrome and Alzheimer’s disease. Mol Chem Neuropathol. 1989;11(3):143–56.

    CAS  PubMed  Google Scholar 

  98. Shin MK, Choi MS, Chae HJ, Kim JW, Kim HG, Kim KL. Ganglioside GQ1b ameliorates cognitive impairments in an Alzheimer’s disease mouse model, and causes reduction of amyloid precursor protein. Sci Rep. 2019;9(1):8512.

    PubMed  PubMed Central  Google Scholar 

  99. Olsen ASB, Faergeman NJ. Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol. 2017;7(5):170069. https://doi.org/10.1098/rsob.170069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fukumoto K, Mizoguchi H, Takeuchi H, Horiuchi H, Kawanokuchi J, Jin S, et al. Fingolimod increases brain-derived neurotrophic factor levels and ameliorates amyloid beta-induced memory impairment. Behav Brain Res. 2014;15(268):88–93.

    Google Scholar 

  101. Doi Y, Takeuchi H, Horiuchi H, Hanyu T, Kawanokuchi J, Jin S, et al. Fingolimod phosphate attenuates oligomeric amyloid beta-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons. PLoS One. 2013;8(4):e61988.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ackerman HD, Gerhard GS. Bile acids in neurodegenerative disorders. Front Aging Neurosci. 2016;8:263.

    PubMed  PubMed Central  Google Scholar 

  103. Frommherz L, Bub A, Hummel E, Rist MJ, Roth A, Watzl B, et al. Age-related changes of plasma bile acid concentrations in healthy adults: results from the cross-sectional KarMeN Study. PLoS One. 2016;11(4):e0153959.

    PubMed  PubMed Central  Google Scholar 

  104. MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease: an emerging role for gut microbiome. Alzheimers Dement. 2019;15(1):76–92.

    PubMed  Google Scholar 

  105. Bazzari FH, Abdallah DM, El-Abhar HS. Chenodeoxycholic acid ameliorates AlCl3-induced Alzheimer’s disease neurotoxicity and cognitive deterioration via enhanced insulin signaling in rats. Molecules. 2019;24(10):E1992. https://doi.org/10.3390/molecules24101992.

    Article  CAS  PubMed  Google Scholar 

  106. Hongpaisan J, Sun MK, Alkon DL. PKC epsilon activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J Neurosci. 2011;31(2):630–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sen A, Nelson TJ, Alkon DL, Hongpaisan J. Loss in PKC epsilon causes downregulation of MnSOD and BDNF expression in neurons of Alzheimer’ disease hippocampus. J Alzheimers Dis. 2018;63(3):1173–89.

    CAS  PubMed  Google Scholar 

  108. Khan TK, Sen A, Hongpaisan J, Lim CS, Nelson TJ, Alkon DL. PKCepsilon deficits in Alzheimer’s disease brains and skin fibroblasts. J Alzheimers Dis. 2015;43(2):491–509.

    CAS  PubMed  Google Scholar 

  109. Farlow MR, Thompson RE, Wei LJ, Tuchman AJ, Grenier E, Crockford D, et al. A randomized, double-blind, placebo-controlled, phase II study assessing safety, tolerability, and efficacy of bryostatin in the treatment of moderately severe to severe Alzheimer’s disease. J Alzheimers Dis. 2019;67(2):555–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mueller BK, Mack H, Teusch N. Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov. 2005;4(5):387–98.

    CAS  PubMed  Google Scholar 

  111. Petratos S, Li QX, George AJ, Hou X, Kerr ML, Unabia SE, et al. The beta-amyloid protein of Alzheimer’s disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism. Brain. 2008;131(Pt 1):90–108.

    PubMed  Google Scholar 

  112. Yu J, Gu Q, Yan Y, Yu H, Guo M, Liu C, et al. Fasudil improves cognition of APP/PS1 transgenic mice via inhibiting the activation of microglia and shifting microglia phenotypes from M1 to M2. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2017;33(12):1585–93.

    PubMed  Google Scholar 

  113. Gu QF, Yu JZ, Wu H, Li YH, Liu CY, Feng L, et al. Therapeutic effect of Rho kinase inhibitor FSD-C10 in a mouse model of Alzheimer’s disease. Exp Ther Med. 2018;16(5):3929–38.

    PubMed  PubMed Central  Google Scholar 

  114. Schrijvers EM, Witteman JC, Sijbrands EJ, Hofman A, Koudstaal PJ, Breteler MM. Insulin metabolism and the risk of Alzheimer disease: the Rotterdam Study. Neurology. 2010;75(22):1982–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Muller AP, Gnoatto J, Moreira JD, Zimmer ER, Haas CB, Lulhier F, et al. Exercise increases insulin signaling in the hippocampus: physiological effects and pharmacological impact of intracerebroventricular insulin administration in mice. Hippocampus. 2011;21(10):1082–92.

    CAS  PubMed  Google Scholar 

  116. Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T. Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc. 2009;57(1):177–9.

    PubMed  Google Scholar 

  117. Isik AT, Soysal P, Yay A, Usarel C. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease. Diabetes Res Clin Pract. 2017;123:192–8.

    CAS  PubMed  Google Scholar 

  118. Dong Q, Teng SW, Wang Y, Qin F, Li Y, Ai LL, et al. Sitagliptin protects the cognition function of the Alzheimer’s disease mice through activating glucagon-like peptide-1 and BDNF-TrkB signalings. Neurosci Lett. 2019;23(696):184–90.

    Google Scholar 

  119. Townsend M, Mehta T, Selkoe DJ. Soluble Aβ inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem. 2007;282(46):33305–12.

    CAS  PubMed  Google Scholar 

  120. McClean PL, Parthsarathy V, Faivre E, Holscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci. 2011;31(17):6587–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. de Souza AG, Chaves Filho AJM, Souza Oliveira JV, de Souza DAA, Lopes IS, de Carvalho MAJ, et al. Prevention of pentylenetetrazole-induced kindling and behavioral comorbidities in mice by levetiracetam combined with the GLP-1 agonist liraglutide: involvement of brain antioxidant and BDNF upregulating properties. Biomed Pharmacother. 2019;109:429–39.

    PubMed  Google Scholar 

  122. Park SW, Mansur RB, Lee Y, Lee JH, Seo MK, Choi AJ, et al. Liraglutide activates mTORC1 signaling and AMPA receptors in rat hippocampal neurons under toxic conditions. Front Neurosci. 2018;12:756.

    PubMed  PubMed Central  Google Scholar 

  123. Bomba M, Granzotto A, Castelli V, Massetti N, Silvestri E, Canzoniero LMT, et al. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiol Aging. 2018;64:33–43.

    CAS  PubMed  Google Scholar 

  124. Avgerinos KI, Kalaitzidis G, Malli A, Kalaitzoglou D, Myserlis PG, Lioutas VA. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: a systematic review. J Neurol. 2018;265(7):1497–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Yu Q, Dai CL, Zhang Y, Chen Y, Wu Z, Iqbal K, et al. Intranasal insulin increases synaptic protein expression and prevents anesthesia-induced cognitive deficits through mTOR-eEF2 pathway. J Alzheimers Dis. 2019;70(3):925–36.

    CAS  PubMed  Google Scholar 

  126. Sonmez AI, Camsari DD, Nandakumar AL, Voort JLV, Kung S, Lewis CP, et al. Accelerated TMS for depression: a systematic review and meta-analysis. Psychiatry Res. 2019;273:770–81.

    PubMed  Google Scholar 

  127. Zhang JJQ, Fong KNK, Ouyang RG, Siu AMH, Kranz GS. Effects of repetitive transcranial magnetic stimulation (rTMS) on craving and substance consumption in patients with substance dependence: a systematic review and meta-analysis. Addiction. 2019;114(12):2137–49.

    PubMed  Google Scholar 

  128. Jauregui-Lobera I, Martinez-Quinones JV. Neuromodulation in eating disorders and obesity: a promising way of treatment? Neuropsychiatr Dis Treat. 2018;14:2817–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Yulug B, Hanoglu L, Khanmammadov E, Duz OA, Polat B, Hanoglu T, et al. Beyond the therapeutic effect of rTMS in Alzheimer’s disease: a possible neuroprotective role of hippocampal BDNF?: a minireview. Mini Rev Med Chem. 2018;18(17):1479–85.

    CAS  PubMed  Google Scholar 

  130. Tan T, Xie J, Liu T, Chen X, Zheng X, Tong Z, et al. Low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Aβ(1-42)-mediated memory deficits in rats. Exp Gerontol. 2013;48(8):786–94.

    PubMed  Google Scholar 

  131. Chen X, Chen S, Liang W, Ba F. Administration of repetitive transcranial magnetic stimulation attenuates Aβ 1-42-induced Alzheimer’s disease in mice by activating beta-catenin signaling. Biomed Res Int. 2019;2019:1431760.

    PubMed  PubMed Central  Google Scholar 

  132. Shin HK, Lee SW, Choi BT. Modulation of neurogenesis via neurotrophic factors in acupuncture treatments for neurological diseases. Biochem Pharmacol. 2017;1(141):132–42.

    Google Scholar 

  133. Li X, Guo F, Zhang Q, Huo T, Liu L, Wei H, et al. Electroacupuncture decreases cognitive impairment and promotes neurogenesis in the APP/PS1 transgenic mice. BMC Complement Altern Med. 2014;22(14):37.

    CAS  Google Scholar 

  134. Lin R, Li L, Zhang Y, Huang S, Chen S, Shi J, et al. Electroacupuncture ameliorate learning and memory by improving N-acetylaspartate and glutamate metabolism in APP/PS1 mice. Biol Res. 2018;51(1):21.

    PubMed  PubMed Central  Google Scholar 

  135. Oh ST, Liu QF, Jeong HJ, Lee S, Samidurai M, Jo J, et al. Nasal cavity administration of melanin-concentrating hormone improves memory impairment in memory-impaired and Alzheimer’s disease mouse models. Mol Neurobiol. 2019;56(12):8076–86.

    CAS  PubMed  Google Scholar 

  136. Schmidt FM, Kratzsch J, Gertz HJ, Tittmann M, Jahn I, Pietsch UC, et al. Cerebrospinal fluid melanin-concentrating hormone (MCH) and hypocretin-1 (HCRT-1, orexin-A) in Alzheimer’s disease. PLoS One. 2013;8(5):e63136.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, et al. Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell. 2005;120(5):701–13.

    CAS  PubMed  Google Scholar 

  138. Jahangiri Z, Gholamnezhad Z, Hosseini M. Neuroprotective effects of exercise in rodent models of memory deficit and Alzheimer’s. Metab Brain Dis. 2019;34(1):21–37.

    CAS  PubMed  Google Scholar 

  139. Friedland RP, Fritsch T, Smyth KA, Koss E, Lerner AJ, Chen CH, et al. Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proc Natl Acad Sci USA. 2001;98(6):3440–5.

    CAS  PubMed  Google Scholar 

  140. Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol. 2001;58(3):498–504.

    CAS  PubMed  Google Scholar 

  141. Dao AT, Zagaar MA, Levine AT, Salim S, Eriksen JL, Alkadhi KA. Treadmill exercise prevents learning and memory impairment in Alzheimer’s disease-like pathology. Curr Alzheimer Res. 2013;10(5):507–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Belviranli M, Okudan N. Voluntary, involuntary and forced exercises almost equally reverse behavioral impairment by regulating hippocampal neurotrophic factors and oxidative stress in experimental Alzheimer’s disease model. Behav Brain Res. 2019;17(364):245–55.

    Google Scholar 

  143. Brown BM, Bourgeat P, Peiffer JJ, Burnham S, Laws SM, Rainey-Smith SR, et al. Influence of BDNF Val66Met on the relationship between physical activity and brain volume. Neurology. 2014;83(15):1345–52.

    CAS  PubMed  Google Scholar 

  144. Goto S, Shen X, Sun M, Hamano Y, Herrup K. The positive effects of viewing gardens for persons with dementia. J Alzheimers Dis. 2018;66(4):1705–20.

    PubMed  Google Scholar 

  145. Uwajeh PC, Iyendo TO, Polay M. Therapeutic gardens as a design approach for optimising the healing environment of patients with Alzheimer’s disease and other dementias: a narrative review. Explore (NY). 2019;15(5):352–62.

    Google Scholar 

  146. Pedrinolla A, Tamburin S, Brasioli A, Sollima A, Fonte C, Muti E, et al. An indoor therapeutic garden for behavioral symptoms in Alzheimer’s disease: a randomized controlled trial. J Alzheimers Dis. 2019;71(3):813–23.

    CAS  PubMed  Google Scholar 

  147. Park SA, Lee AY, Park HG, Lee WL. Benefits of gardening activities for cognitive function according to measurement of brain nerve growth factor levels. Int J Environ Res Public Health. 2019;16(5):E760. https://doi.org/10.3390/ijerph16050760.

    Article  CAS  PubMed  Google Scholar 

  148. Kumar K, Kumar A, Keegan RM, Deshmukh R. Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother. 2018;98:297–307.

    CAS  PubMed  Google Scholar 

  149. Sangiovanni E, Brivio P, Dell’Agli M, Calabrese F. Botanicals as modulators of neuroplasticity: focus on BDNF. Neural Plast. 2017;2017:5965371.

    PubMed  PubMed Central  Google Scholar 

  150. Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer’s disease: pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv. 2017;35(2):178–216.

    CAS  PubMed  Google Scholar 

  151. Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res. 2018;42(3):239–47.

    PubMed  Google Scholar 

  152. Li F, Wu X, Li J, Niu Q. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer’s disease model. Mol Med Rep. 2016;13(6):4904–10.

    CAS  PubMed  Google Scholar 

  153. Bukhari SN, Jantan I. Synthetic curcumin analogs as inhibitors of beta-amyloid peptide aggregation: potential therapeutic and diagnostic agents for Alzheimer’s disease. Mini Rev Med Chem. 2015;15(13):1110–21.

    PubMed  Google Scholar 

  154. Huang S, Cao X, Zhou Y, Shi F, Xin S, He S, et al. An analog derived from phenylpropanoids ameliorates Alzheimer’s disease-like pathology and protects mitochondrial function. Neurobiol Aging. 2019;80:187–95.

    CAS  PubMed  Google Scholar 

  155. Zhang L, Fang Y, Xu Y, Lian Y, Xie N, Wu T, et al. Curcumin improves aamyloid beta-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One. 2015;10(6):e0131525.

    PubMed  PubMed Central  Google Scholar 

  156. Szurpnicka A, Zjawiony JK, Szterk A. Therapeutic potential of mistletoe in CNS-related neurological disorders and the chemical composition of Viscum species. J Ethnopharmacol. 2019;1(231):241–52.

    Google Scholar 

  157. Habtemariam S. Natural products in Alzheimer’s disease therapy: would old therapeutic approaches fix the broken promise of modern medicines? Molecules. 2019;24(8):1519.

    CAS  PubMed Central  Google Scholar 

  158. Dinda B, Dinda M, Kulsi G, Chakraborty A, Dinda S. Therapeutic potentials of plant iridoids in Alzheimer’s and Parkinson’s diseases: a review. Eur J Med Chem. 2019;1(169):185–99.

    Google Scholar 

  159. Li Q, Che HX, Wang CC, Zhang LY, Ding L, Xue CH, et al. Cerebrosides from sea cucumber improved Aβ1–42-induced cognitive deficiency in a rat model of Alzheimer’s disease. Mol Nutr Food Res. 2019;63(5):e1800707.

    PubMed  Google Scholar 

  160. Abdul Manap AS, Vijayabalan S, Madhavan P, Chia YY, Arya A, Wong EH, et al. Bacopa monnieri, a neuroprotective lead in Alzheimer disease: a review on its properties, mechanisms of action, and preclinical and clinical studies. Drug Target Insights. 2019;13:1177392819866412.

    PubMed  PubMed Central  Google Scholar 

  161. Pandareesh MD, Anand T. Neuromodulatory propensity of Bacopa monnier against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression. Cell Mol Neurobiol. 2013;33(7):875–84.

    CAS  PubMed  Google Scholar 

  162. Fukuchi M, Okuno Y, Nakayama H, Nakano A, Mori H, Mitazaki S, et al. Screening inducers of neuronal BDNF gene transcription using primary cortical cell cultures from BDNF-luciferase transgenic mice. Sci Rep. 2019;9(1):11833.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Fumagalli.

Ethics declarations

Funding

This research was supported by Grants from MIUR Progetto Eccellenza.

Conflict of interest

Lucia Caffino, Francesca Mottarlini, and Fabio Fumagalli have no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caffino, L., Mottarlini, F. & Fumagalli, F. Born to Protect: Leveraging BDNF Against Cognitive Deficit in Alzheimer’s Disease. CNS Drugs 34, 281–297 (2020). https://doi.org/10.1007/s40263-020-00705-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-020-00705-9

Navigation