Skip to main content

Advertisement

Log in

Anacardium occidentale leaves extract and riboceine mitigate hyperglycemia through anti-oxidative effects and modulation of some selected genes associated with diabetes

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

Diabetes mellitus (DM) is one of the leading causes of death globally and complications of DM have become a major health concern. Anacardium occidentale is a plant widely recognized for its hypoglycemic properties and traditionally used in developing nations as remedy for DM treatment. Riboceine is a supplement that enhances production of glutathione and known for its vital role in supporting cellular function. This study was designed to evaluate the antidiabetic and antioxidant potential of riboceine and ethanolic extract of A. occidentale leaves in streptozotocin (STZ)-induced diabetic rats.

Method

Twenty-nine adult male Wistar rats were induced with DM intraperitoneally using a single dose of STZ (70 mg/kg). The STZ-induced rats were divided into groups and administered the same dose (100 mg/kg) of A. occidentale leaves extract and riboceine via gastric gavage at the dose (100 mg/kg) for seventeen days while metformin (40 mg/kg) was used as positive control. Fasting blood glucose and weight of the model rats were examined periodically. Activities of total protein, creatinine, urea, antioxidants (SOD, GSH and GPX), and level of serum insulin were determined. Expression of diabetes related genes including pancreas (Insulin, pdx-1, P16NK4A, and Mki-67), Liver (FAS, ACC, and GFAT) and KIM-1 genes were also determined.

Results

Data showed that treatment of STZ-induced diabetic rats with A. occidentale and riboceine at the same dose significantly (p < 0.05) ameliorated hyperglycemic effects by improving hepatic and renal functions and antioxidants, preventing hepatic fat accumulation by downregulation of ACC, FAS and GFAT expression, improving β-cell functions through up-regulation of pancreatic insulin, P16NK4A, Mki-67 and pdx-1 expression. Induction of diabetes upregulated mRNA expression of KIM-1, which was ameliorated after treatment of the rats with A. occidentale and riboceine.

Conclusion

The results obtained in this study demonstrate significant antidiabetic properties of ethanolic extract of A. occidentale and riboceine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Elekofehinti OO, et al. Discovery of potential visfatin activators using in silico docking and ADME predictions as therapy for type 2 diabetes. Beni-suef Univ J Basic Appl Sci. 2018;7:241–249.

  2. Osadebe PO, Odoh EU, Uzor PF. The search for new hypoglycemic agents from plant. Afr J Pharm Pharmacol. 2014;8(11):292–303. https://doi.org/10.5897/AJPP2014.3933.

    Article  Google Scholar 

  3. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Emerging Risk Factors Collaboration. Lancet. 2010;375(9733):2215–2222. https://doi.org/10.1016/S0140-6736(10)60484-9

  4. Jangid H, Chaturvedi S, Khinchi M. An overview on diabetis mellitus. Asian J Pharm Res Dev. 2017;1–11.

  5. Elekofehinti OO, Ayodele OC, Iwaloye O. Momordica charantia nanoparticles promote mitochondria biogenesis in the pancreas of diabetic-induced rats: gene expression study. Egypt J Med Hum Genet. 2015;22:80. https://doi.org/10.1186/s43042-021-00200-w.

    Article  Google Scholar 

  6. Centers for disease control and prevention. What is diabetes? https://www.cdc.gov/diabetes/basics/diabetes.html. Accessed 20 Feb 2022

  7. Wesam K, Maryam F, Zahra A, Damoon A, Majid A. The role of medicinal plants in the treatment of diabetes: a systematic review. 2016;8(1):1832–1842. https://doi.org/10.19082/1832.

  8. Rose K, Haikael DM, Judith K. Traditional Medicine and Its Role in the Management of Diabetes Mellitus: (Patients’ and Herbalists’ Perspectives). Evid Based Complement Alternat Med. 2019. https://doi.org/10.1155/2019/2835691.

    Article  Google Scholar 

  9. Elekofehinti OO, Ariyo EO, Iwaloye O, Obafemi TO. Co-administration of metformin and gallic acid modulates JAK/STAT signaling pathway and glutathione metabolism in fructose-fed streptozotocin diabetic Rats. Phytomedi Plus. 2022;100181. https://doi.org/10.1016/j.phyplu.2021.100181.

  10. Teixeira CC, et al. Absence of anti-hyperglycaemic effect of Jambolan in experimental and clinical models. J Ethnopharmacol. 2000;71:343–7.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes. 2014;7:587–91. https://doi.org/10.2147/DMSO.S67400.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shoback DG, Gardner D, eds. Greenspan's basic & clinical endocrinology (9th ed.). McGraw-Hill Medical. 2011.

  13. Bindu J, Narendhirakannan RT. Role of medicinal plants in the management of diabetes mellitus: a review. Biotech. 2009;9:4. https://doi.org/10.1007/s13205-018-1528-0.

    Article  Google Scholar 

  14. Dean L, McEntyre J. The genetic landscape of diabetes [Internet]. National Center for Biotechnology Information (US), Bethesda. 2004.

  15. Cooke DW, Plotnick L. Type 1 diabetes mellitus in pediatrics. Pediatr Rev. 2008;29(11):374–84. https://doi.org/10.1542/pir.29-11-374.

    Article  PubMed  Google Scholar 

  16. Kenny C. When hypoglycemia is not obvious: diagnosing and treating under-recognized and undisclosed hypoglycemia. Prim Care Diabetes. 2014;8(1):3–11. https://doi.org/10.1016/j.pcd.2013.09.002.PMID24100231.

    Article  PubMed  Google Scholar 

  17. Sarwar N, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22. https://doi.org/10.1016/S0140-6736(10)60484-9.

    Article  CAS  PubMed  Google Scholar 

  18. O’Gara PT, et al. ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(4):362–425. https://doi.org/10.1161/CIR.0b013e3182742cf6.

    Article  Google Scholar 

  19. Cukierman T. Cognitive decline and dementia in diabetes – systematic overview of prospective observational studies. Diabetologia. 2005;48(12):2460–9. https://doi.org/10.1007/s00125-005-0023-4.

    Article  CAS  PubMed  Google Scholar 

  20. American Diabetes, Association. Lifestyle Management: Standards of Medical Care in Diabetes. Diabetes Care. 2019;42(1):46–60. https://doi.org/10.2337/dc19-S005.

  21. Rosberger DF. Diabetic retinopathy: current concepts and emerging therapy. Endocrinol Metab Clin North Am. 2013;42(4):721–45. https://doi.org/10.1016/j.ecl.2013.08.001.

    Article  PubMed  Google Scholar 

  22. Thanabalasingham G, Owen KR. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ. 2011;343(3):6044. https://doi.org/10.1136/bmj.d6044.

    Article  CAS  Google Scholar 

  23. Sattar N, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–42. https://doi.org/10.1016/S0140-6736(09)61965-6.

    Article  CAS  PubMed  Google Scholar 

  24. Kooti W, et al. Therapeutic and pharmacological potential of Foeniculum vulgare Mill: A review. J HerbMed Pharmacol. 2015;4:1–9.

    CAS  Google Scholar 

  25. Elekofehinti OO, Adewumi NA, Iwaloye O. Antidiabetic potential of Chromolaena Odorata leave extract and its effect on Nrf2/keap1 antioxidant pathway in the liver of diabetic-induced Wistar Rats. Adv Tradit Med. 2021. https://doi.org/10.1007/s13596-021-00618-y.

    Article  Google Scholar 

  26. Ajiboye BO, Iwaloye O, Owolabi OV, et al. Screening of potential antidiabetic phytochemicals from Gongronema latifolium leaf against therapeutic targets of type 2 diabetes mellitus: multi-targets drug design. SN Appl Sci. 2015;4:14. https://doi.org/10.1007/s42452-021-04880-2.

  27. Afrisham R, et al. Inhibitory Effect of Heracleumpersicum and Ziziphus jujuba on Activity of Alpha-Amylase. J Bot. 2015;1–8. https://doi.org/10.1155/2015/824683.

  28. Gondi M, et al. Anti‐diabetic effect of dietary mango (Mangifera indica L.) peel in streptozotocin‐induced diabetic rats. J Sci Food Agric. 2014;95(5):991–9. https://doi.org/10.1002/jsfa.6778.

  29. Olawale F, Olofinsan K, Iwaloye O. Biological activities of Chromolaena odorata: A mechanistic review. S Afr J Bot. 2022;144:44–57.

    Article  CAS  Google Scholar 

  30. Kubo I, Nitoda T, Tocoli FE, Green IR. Multifunctional cytotoxic agents from Anacardium occidentale. Phytother Res. 2011;25(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  31. Kulis M, et al. Pepsinized cashew proteins are hypoallergenic and immunogenic and provide effective immunotherapy in micewith cashew allergy. J Allergy Clin Immunol. 2012;30(3):716–23.

    Article  Google Scholar 

  32. Castillo-Juarez I, Rivero-Cruz F, Celis H, Romero I. Anti-Helicobacter pylori activity of anacardic acids from Amphipterygium adstringens. J Ethnopharmacol. 2007;11401:72–7.

    Article  Google Scholar 

  33. Olajide OA, Aderogba MA, Adedapo ADA, Makinde JM. Effects of Anacardium occidentale stem bark extract on in vivo inflammatory models. J Ethnopharmacol. 2004;95(3):139–42.

    Article  PubMed  Google Scholar 

  34. Olajide OA, Aderogba MA, Fiebich BL. Mechanisms of anti-inflammatory property of Anacardium occidentale stem bark: Inhibition of NF-κB and MAPK signalling in the microglia. J Ethnopharmacol. 2013;145(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  35. Jaiswal Y, Tatke P, Gabhe SY, Vaidya A. Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n-streptozotocin diabetic rats. J Tradit Complement Med. 2016;1:7.

  36. Lawrence AO, John IO, Ayodele OS. Antidiabetic Effect of Anacardium occidentale. Stem-Bark in Fructose-Diabetic Rats. Pharm Biol. 2005;43(7):589–93. https://doi.org/10.1080/13880200500301712.

    Article  Google Scholar 

  37. Palheta IC, Ferreira LR. Hypoglycemic potential of Anacardium occidentale L. J Anal Pharm Res. 2018;7(2):152–1 53. https://doi.org/10.15406/japlr.2018.07.00216.

  38. Ukwenya VO, Adelakun SA, Elekofehinti OO. Exploring the antidiabetic potential of compounds isolated from Anacardium occidentale using computational aproach: ligand-based virtual screening. In Silico Pharmacol. 2021;3(9):25. https://doi.org/10.1007/s40203-021-00084-z.

    Article  Google Scholar 

  39. Ukwenya VO, Ashaolu OJ, Adeyemi DO, Abraham KJ. Experimental diabetes and the epididymis of Wistar rats: The protective effects of Anacardium occidentale (Linn.). J Exp Clin Anat. 2015;14:57–62.

  40. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5.

    Article  CAS  PubMed  Google Scholar 

  41. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–90.

    CAS  PubMed  Google Scholar 

  42. Rotruck JT, et al. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588–90. https://doi.org/10.1126/science.179.4073.588.

    Article  CAS  PubMed  Google Scholar 

  43. Gornall AG, Bardawill CJ, David MM. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949;177(2):751–66.

    Article  CAS  PubMed  Google Scholar 

  44. Folorunso IM, Olawale F, Olofinsan K, Iwaloye O. Picralima nitida leaf extract ameliorates oxidative stress and modulates insulin signaling pathway in high fat-diet/STZ induced diabetic rats. S Afr J Bot. 2022;148:268–82.

    Article  CAS  Google Scholar 

  45. Sokeng SD, et al. Hypoglycemic Effect of Anacardium occidentale L. Methanol Extract and Fractions on Streptozotocin-induced Diabetic Rats. Glob J Pharmacol. 2007;1(1):01–05.

  46. Saidu AN, Akanya HO, Dauda BEN, Ogbadoyi EO. Antibacterial and comparative hypoglycemic effect of Anacardium occidentale leaves. Int Res J Biochem Bioinformatics. 2012;2(1):006–10.

    Google Scholar 

  47. Dionísio AP, e al. Cashew-apple (Anacardium occidentale L.) and yacon (Smallanthus sonchifolius) functional beverage improve the diabetic state in rats. Food Res Int. 2015;77:171–176.

  48. Jaiswal YS, Tatke PA, Gabhe YS, Vaidya AB. Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n-streptozotocin diabetic rats. J Tradit Complement Med Vol. 2017;7(4):421–427.

  49. Obaineh OM, Shadrach A. Phytochemical Constituents and Medicinal Properties of Different Extracts of Anacardium Occidentale and Psidium Guajava. Asian J Biomed Pharm Sci. 2013;3(16):20–3.

    Google Scholar 

  50. Ojezele OA, Agunbiade S. Phytochemical Constituents and Medicinal Properties of Different Extracts of Anacardium Occidentale and Psidium Guajava. Asian J Biomed Pharm Sci. 2013;3(16):2–23.

    Google Scholar 

  51. Awodele O, et al. Toxicological evaluation of therapeutic and supra-therapeutic doses of Cellgevity® on reproductive function and biochemical indices in Wistar rats. BMC Pharmacol Toxicol. 2018;19:68. https://doi.org/10.1186/s40360-018-0253-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rajendran P, et al. Antioxidants and human diseases. Clin Chim Acta. 2014;436:332–47.

    Article  CAS  PubMed  Google Scholar 

  53. Kaleem M, Asif M, Ahmed QU, Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Med J. 2006;47:670–5.

    CAS  PubMed  Google Scholar 

  54. Searle AJ, Wilson RL. Glutathione peroxidase: Effect of superoxide, hydroxyl and bromine free radicals on enzyme activity. Int J Radiat Biol Relat Stud Phys Chem Med. 1980;37:213.

    Article  CAS  PubMed  Google Scholar 

  55. Freeman BA, Crapo JD. Biology of disease: Free radicals and tissue injury. Lab Invest. 1982;47:412.

    CAS  PubMed  Google Scholar 

  56. Main PA, et al. The potential role of the antioxidant and detoxification properties of glutathione in autism spectrum disorders: a systematic review and meta-analysis. Nutr Metab (Lond). 2012;9:35. https://doi.org/10.1186/1743-7075-9-35.

    Article  CAS  PubMed  Google Scholar 

  57. Jaiswal YS, Tatke PA, Gabhe SY, Ashok V. Antioxidant activity of various extracts of leaves of Anacardium occidentale(cashew). Res J Pharm Biol Chem Sci. 2010;1:112–9.

    Google Scholar 

  58. Chotphruethipong L, Benjakul S, Kijroongrojana K. Optimization of extraction of antioxidative phenolic compounds from cashew (Anacardium occidentale L.) leaves using response surface methodology. J Food Biochem. 2017;41:12379.

  59. Huda-Faujan N, Rahim ZA, Rehan MM, Ahmad FH. Comparative analysis of phenolic content and antioxidative activities of eight Malaysian traditional vegetables. Malay J Anal Sci. 2015;19:611–24.

    Google Scholar 

  60. Kongkachuichai R, et al. Nutrients value and antioxidant content of indigenous vegetables from Southern Thailand. Food Chem. 2015;173:838–46.

    Article  CAS  PubMed  Google Scholar 

  61. Pasupathi P, Chandrasekar V, Senthil Kumar U. Evaluation of oxidative stress, enzymatic and non-enzymatic antioxidants and metabolic thyroid hormone status in patients with diabetes mellitus. Diabetes and metabolic syndrome. Clin Res Rev. 2009;3:160–165.

  62. Chandramohan G, Al-Numair KS, Pugalendi KV. Effect of 3-hydroxymethyl xylitol on hepatic and renal functional markers and protein levels in streptozotocin diabetic rats. Afr J Biochem Res. 2009;3:198–204.

    CAS  Google Scholar 

  63. Zulcafli AS, et al. Antidiabetic Potential of Syzygium sp.: An Overview. The Yale journal of biology and medicine. 2020;93(2):307–325.

  64. Ajiboye BO, et al. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats. Adv Pharm Bull. 2018;8(1):141–7. https://doi.org/10.15171/apb.2018.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. AMAAghajanyan A, Movsisyan Z, Trchounian A. Antihyperglycemic and Antihyperlipidemic Activity of Hydroponic Stevia rebaudiana Aqueous Extract in Hyperglycemia Induced by Immobilization Stress in Rabbits. Biomed Res Int. 2017;9251358. https://doi.org/10.1155/2017/9251358.

  66. Moodley K, et al. Antioxidant, antidiabetic and hypolipidemic effects of tulbaghia violacea harv. (wild garlic) rhizome methanolic extract in a diabetic rat model. BMC Complement Altern Med. 2015;15:408. https://doi.org/10.1186/s12906-015-0932-9.

  67. Sartang NM, Mazloomi SM, Tanideh N, Zadeh AR. The effects of probiotic soymilk fortified with omega-3 on blood glucose, lipid profile, haematological and oxidative stress, and inflammatory parameters in streptozotocin. J Diabetes Res. 2015. https://doi.org/10.1155/2015/696372

  68. Nukatsuka M, Yoshimura Y, Nishid AM, Kawada J. Importance of the concentration of ATP in rat pancreatic beta cells in the mechanism of streptozotocin-induced cytotoxicity. J Endocrinol. 1990;127:161–5.

    Article  CAS  PubMed  Google Scholar 

  69. Bedoya FJ, Solano F, Lucas M. N-monomethyl-arginine and nicotinamide prevent streptozotocin-induced double strand DNA break formation in pancreatic rat islets. Experientia. 1996;52:344–7.

    Article  CAS  PubMed  Google Scholar 

  70. Sai Varsha MKN, Thiagarajan R, Manikandan R, Dhanasekaran G. Vitamin K1 alleviates streptozotocin-induced type 1 diabetes by mitigating free radical stress, as well as inhibiting NF-kB activation and iNOS expression in rat pancreas. Nutrition. 2015;31:214–22.

    Article  Google Scholar 

  71. Ngubane PS, Hadebe SI, Serumula MR, Musabayane CT. The effects of transdermal insulin treatment of streptozotocin-induced diabetic rats on kidney function and renal expression of glucose transporters. Ren Fail. 2015;37(1):151–9.

    Article  CAS  PubMed  Google Scholar 

  72. Gouda W, et al. Effects of nano-curcumin on gene expression of insulin and insulin receptor. Bull Natl Res Cent. 2019;43:128. https://doi.org/10.1186/s42269-019-0164-0.

    Article  Google Scholar 

  73. Kouhsari SM, Moradabadi L, San MF. Hypoglycemic Effects of Three Medicinal Plants in Experimental Diabetes: Inhibition of Rat Intestinal α-glucosidase and Enhanced Pancreatic Insulin and Cardiac Glut-4 mRNAs Expression. Iran J Pharm Res. 2013;12(3):387–97.

    Google Scholar 

  74. Jayaprasada B, Sharavanana PS, Sivarajb R. Antidiabetic effect of Chloroxylon swietenia bark extracts on streptozotocin induced diabetic rats. Beni-Suef Univ J Basic Appl Sci. 2016;5(1):61–69.

  75. Fujimoto K, Polonsky KS. xPdx1 and other factors that regulate pancreatic β-cell survival Diabetes Obes Metab. 2009;11(4):30–37. https://doi.org/10.1111/j.1463-1326.2009.01121.

  76. Spaeth JM, et al. Defining a Novel Role for the Pdx1 Transcription Factor in Islet β-Cell Maturation and Proliferation During Weaning. Diabetes. 2017;66(11):2830–2839. https://doi.org/10.2337/db16-1516.

  77. Marghani B, Ateya A, Saleh R, Eltaysh R. Antidiabetic and Ameliorative Effect of Lupin Seed Aqueous Extract on Hyperglycemia, Hyperlipidemia and Effect on pdx1, Nkx6.1, Insulin-1, GLUT-2 and Glucokinase Genes Expression in Streptozotocin-induced Diabetic Rats. J Food Nutr Res. 2019;7:333–341.

  78. Whitfield ML, George LK, Grant GD, Perou CM. Common markers of proliferation. Nat Rev Cancer. 2006;6:99–106.

    Article  CAS  PubMed  Google Scholar 

  79. Anne PL, Clay J, Semenkovich F. Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim Biophys Acta. 2012;1821(5):747–53. https://doi.org/10.1016/j.bbalip.2011.09.017.

    Article  CAS  Google Scholar 

  80. Semenkovich CF. Regulation of fatty acid synthase (FAS). Prog Lipid Res. 1997;36(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  81. Smith S. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes FASEB J. 1994;8(15):1248–1259.

  82. Paulauskis JD, Sul HS. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J Biol Chem. 1989;264(1):574–7.

    Article  CAS  PubMed  Google Scholar 

  83. Tong L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci. 2005;62(16):1784–803. https://doi.org/10.1007/s00018-005-5121-4.PMID15968460.

    Article  CAS  PubMed  Google Scholar 

  84. Bin-Jumah MN. Monolluma quadrangula protects against oxidative stress and modulates LDL receptor and fatty acid synthase gene expression in hypercholesterolemic rats. Oxid Med Cell Longev. 2018;3914384:10.

    Google Scholar 

  85. Xie Z, et al. Nuciferine prevents hepatic steatosis by regulating lipid metabolismin diabetic rat model. Open Life Sci. 2019;14:699–706.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kuo-Chen C. Molecular Therapeutic Target for Type-2 Diabetes. Proteome Res. 2004;3(6):1284–8. https://doi.org/10.1021/pr049849v.

    Article  CAS  Google Scholar 

  87. Kolm-Litty V, et al. High glucose induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest. 1998;101:160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Du XL, et al. Hyperglycemia induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci. 2000;97:12222–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Khan AB, Fatima SS, Khan GM, Shahid S. Evaluation of kidney injury molecule-1 as a disease progression biomarker in diabetic nephropathy. Pak J Med Sci. 2019;35(4):992–996. https://doi.org/10.12669/pjms.35.4.154.

  90. Plotnikov EY, et al. The role of oxidative stress in acute renal injury of newborn rats exposed to hypoxia and endotoxin. FEBS J. 2017;284:3069–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Okoliko Ukwenya.

Ethics declarations

Ethical approval

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukwenya, V.O., Alese, M.O., Ogunlade, B. et al. Anacardium occidentale leaves extract and riboceine mitigate hyperglycemia through anti-oxidative effects and modulation of some selected genes associated with diabetes. J Diabetes Metab Disord 22, 455–468 (2023). https://doi.org/10.1007/s40200-022-01165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-022-01165-2

Keywords

Navigation