Skip to main content

Advertisement

Log in

Interferon regulated gene (IRG) expression-signature in a mouse model of chikungunya virus neurovirulence

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Interferon regulated genes (IRGs) are critical in controlling virus infections. Here, we analyzed the expression profile of IRGs in the brain tissue in a mouse model of chikungunya virus (CHIKV) neurovirulence. Neurovirulence is one of the newer complications identified in disease caused by re-emerging strains of CHIKV, an alphavirus with positive-strand RNA in the Togaviridae family. In microarray analysis, we identified significant upregulation of 269 genes, out of which a predominant percentage (76%) was IRGs. The highly modulated IRGs included Ifit1, Ifi44, Ddx60, Usp18, Stat1, Rtp4, Mnda, Gbp3, Gbp4, Gbp7, Oasl2, Oas1g, Ly6a, Igtp, and Gbp10, along with many others exhibiting lesser changes in expression levels. We found that these IRG mRNA transcripts are modulated in parallel across CHIKV-infected mouse brain tissues, human neuronal cell line IMR-32 and hepatic cell line Huh-7. The genes identified to be highly modulated both in mouse brain and human neuronal cells were Ifit1, Ifi44, Ddx60, Usp18, and Mnda. In Huh-7 cells, however, only two IRGs (Gbp4 and Gbp7) showed a similar level of upregulation. Concordant modulation of IRGs in both mice and human cells indicates that they might play important roles in regulating CHIKV replication in the central nervous system (CNS). The induction of several IRGs in CNS during infection underscores the robustness of IRG-mediated innate immune response in CHIKV restriction. Further studies on these IRGs would help in evolving possibilities for their targeting in host-directed therapeutic interventions against CHIKV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abraham R, Mudaliar P, Padmanabhan A, Sreekumar E (2013) Induction of cytopathogenicity in human glioblastoma cells by chikungunya virus. PLoS One 8:e75854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atasheva S, Frolova EI, Frolov I (2014) Interferon-stimulated poly(ADP-ribose) polymerases are potent inhibitors of cellular translation and virus replication. J Virol 88:2116–2130

    Article  PubMed  PubMed Central  Google Scholar 

  • Bick MJ, Carroll JW, Gao G, Goff SP, Rice CM, MacDonald MR (2003) Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J Virol 77:11555–11562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder GK, Griffin DE (2001) Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science 293:303–306

    Article  CAS  PubMed  Google Scholar 

  • Borden EC, Williams BR (2011) Interferon-stimulated genes and their protein products: what and how? J Interf Cytokine Res 31:1–4

    Article  CAS  Google Scholar 

  • Bordignon J, Probst CM, Mosimann AL, Pavoni DP, Stella V, Buck GA, Satproedprai N, Fawcett P, Zanata SM, de Noronha L, Krieger MA, Duarte Dos Santos CN (2008) Expression profile of interferon stimulated genes in central nervous system of mice infected with dengue virus Type-1. Virology 377:319–329

    Article  CAS  PubMed  Google Scholar 

  • Brehin AC, Casademont I, Frenkiel MP, Julier C, Sakuntabhai A, Despres P (2009) The large form of human 2′,5′-oligoadenylate synthetase (OAS3) exerts antiviral effect against Chikungunya virus. Virology 384:216–222

    Article  CAS  PubMed  Google Scholar 

  • Chiam CW, Chan YF, Ong KC, Wong KT, Sam IC (2015) Neurovirulence comparison of chikungunya virus isolates of the Asian and East/Central/South African genotypes from Malaysia. J Gen Virol 96:3243–3254

    Article  CAS  PubMed  Google Scholar 

  • Couderc T, Chretien F, Schilte C, Disson O, Brigitte M, Guivel-Benhassine F, Touret Y, Barau G, Cayet N, Schuffenecker I, Despres P, Arenzana-Seisdedos F, Michault A, Albert ML, Lecuit M (2008) A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 4:e29

    Article  PubMed  PubMed Central  Google Scholar 

  • Das T, Jaffar-Bandjee MC, Hoarau JJ, Krejbich Trotot P, Denizot M, Lee-Pat-Yuen G, Sahoo R, Guiraud P, Ramful D, Robin S, Alessandri JL, Gauzere BA, Gasque P (2010) Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog Neurobiol 91:121–129

    Article  CAS  PubMed  Google Scholar 

  • Daugherty MD, Young JM, Kerns JA, Malik HS (2014) Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet 10:e1004403

    Article  PubMed  PubMed Central  Google Scholar 

  • de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69:912–920

    PubMed  Google Scholar 

  • Dhanwani R, Khan M, Alam SI, Rao PV, Parida M (2011) Differential proteome analysis of Chikungunya virus-infected newborn mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics 11:1936–1951

    Article  CAS  PubMed  Google Scholar 

  • Dhib-Jalbut SS, Xia Q, Drew PD, Swoveland PT (1995) Differential up-regulation of HLA class I molecules on neuronal and glial cell lines by virus infection correlates with differential induction of IFN-beta. J Immunol 155:2096–2108

    CAS  PubMed  Google Scholar 

  • Diamond MS (2014) IFIT1: a dual sensor and effector molecule that detects non-2′-O methylated viral RNA and inhibits its translation. Cytokine Growth Factor Rev 25:543–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Economopoulou A, Dominguez M, Helynck B, Sissoko D, Wichmann O, Quenel P, Germonneau P, Quatresous I (2009) Atypical Chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005-2006 outbreak on Reunion. Epidemiol Infect 137:534–541

    Article  CAS  PubMed  Google Scholar 

  • Fraisier C, Koraka P, Belghazi M, Bakli M, Granjeaud S, Pophillat M, Lim SM, Osterhaus A, Martina B, Camoin L, Almeras L (2014) Kinetic analysis of mouse brain proteome alterations following Chikungunya virus infection before and after appearance of clinical symptoms. PLoS One 9:e91397

    Article  PubMed  PubMed Central  Google Scholar 

  • Francois-Newton V, Magno de Freitas Almeida G, Payelle-Brogard B, Monneron D, Pichard-Garcia L, Piehler J, Pellegrini S, Uze G (2011) USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon alpha response. PLoS One 6:e22200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frolova EI, Fayzulin RZ, Cook SH, Griffin DE, Rice CM, Frolov I (2002) Roles of nonstructural protein nsP2 and alpha/beta interferons in determining the outcome of Sindbis virus infection. J Virol 76:11254–11264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fros JJ, Liu WJ, Prow NA, Geertsema C, Ligtenberg M, Vanlandingham DL, Schnettler E, Vlak JM, Suhrbier A, Khromykh AA, Pijlman GP (2010) Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J Virol 84:10877–10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerardin P, Barau G, Michault A, Bintner M, Randrianaivo H, Choker G, Lenglet Y, Touret Y, Bouveret A, Grivard P, Le Roux K, Blanc S, Schuffenecker I, Couderc T, Arenzana-Seisdedos F, Lecuit M, Robillard PY (2008) Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Reunion. PLoS Med 5:e60

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Rao PV (2011) Transcriptomic profile of host response in Japanese encephalitis virus infection. Virol J 8:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Santhosh SR, Babu JP, Parida MM, Rao PV (2010) Chemokine profiling of Japanese encephalitis virus-infected mouse neuroblastoma cells by microarray and real-time RT-PCR: implication in neuropathogenesis. Virus Res 147:107–112

    Article  CAS  PubMed  Google Scholar 

  • Hoarau JJ, Jaffar Bandjee MC, Krejbich Trotot P, Das T, Li-Pat-Yuen G, Dassa B, Denizot M, Guichard E, Ribera A, Henni T, Tallet F, Moiton MP, Gauzere BA, Bruniquet S, Jaffar Bandjee Z, Morbidelli P, Martigny G, Jolivet M, Gay F, Grandadam M, Tolou H, Vieillard V, Debre P, Autran B, Gasque P (2010) Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol 184:5914–5927

    Article  CAS  PubMed  Google Scholar 

  • Honda Y, Kondo J, Maeda T, Yoshiyama Y, Yamada E, Shimizu YK, Shikata T, Ono Y (1990) Isolation and purification of a non-A, non-B hepatitis-associated microtubular aggregates protein. J Gen Virol 71(Pt 9):1999–2004

    Article  CAS  PubMed  Google Scholar 

  • Honke N, Shaabani N, Zhang DE, Hardt C, Lang KS (2016) Multiple functions of USP18. Cell Death Dis 7:e2444

    Article  PubMed  PubMed Central  Google Scholar 

  • Horvath CM, Darnell JE Jr (1996) The antiviral state induced by alpha interferon and gamma interferon requires transcriptionally active Stat1 protein. J Virol 70:647–650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Wang J, Yang B, Zheng N, Qin M, Ji Y, Lin G, Tian L, Wu X, Wu L, Sun B (2011) Guanylate binding protein 4 negatively regulates virus-induced type I IFN and antiviral response by targeting IFN regulatory factor 7. J Immunol 187:6456–6462

    Article  CAS  PubMed  Google Scholar 

  • Kitamura A, Takahashi K, Okajima A, Kitamura N (1994) Induction of the human gene for p44, a hepatitis-C-associated microtubular aggregate protein, by interferon-alpha/beta. Eur J Biochem 224:877–883

    Article  CAS  PubMed  Google Scholar 

  • Kucher VV, Matsuka GK, Rozhmanova OM, Dolgaya EV, Stelmakh LN, Pogorelaya NK (2000) Effect of recombinant interferon-α2b (Laferon) on human neuroblastoma cells. Neurophysiology 32:226–227

    Article  Google Scholar 

  • Law GL, Tisoncik-Go J, Korth MJ, Katze MG (2013) Drug repurposing: a better approach for infectious disease drug discovery? Curr Opin Immunol 25:588–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O'Guin AK, Schmidt RE, Levine B, Virgin HW (2005) Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol 79:13974–13983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy DE, Garcia-Sastre A (2001) The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev 12:143–156

    Article  CAS  PubMed  Google Scholar 

  • Li K, Chen Z, Kato N, Gale M Jr, Lemon SM (2005) Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J Biol Chem 280:16739–16747

    Article  CAS  PubMed  Google Scholar 

  • Liu SY, Sanchez DJ, Aliyari R, Lu S, Cheng G (2012) Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci U S A 109:4239–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPherson RL, Abraham R, Sreekumar E, Ong SE, Cheng SJ, Baxter VK, Kistemaker HA, Filippov DV, Griffin DE, Leung AK (2017) ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence. Proc Natl Acad Sci U S A 114:1666–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melén K, Keskinen P, Lehtonen A, Julkunen I (2000) Interferon-induced gene expression and signaling in human hepatoma cell lines. J Hepatol 33:764–772

    Article  PubMed  Google Scholar 

  • Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566

    Article  PubMed  Google Scholar 

  • Morrison TE (2014) Reemergence of chikungunya virus. J Virol 88:11644–11647

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordmann A, Wixler L, Boergeling Y, Wixler V, Ludwig S (2012) A new splice variant of the human guanylate-binding protein 3 mediates anti-influenza activity through inhibition of viral transcription and replication. FASEB J 26:1290–1300

    Article  CAS  PubMed  Google Scholar 

  • Oshiumi H, Miyashita M, Okamoto M, Morioka Y, Okabe M, Matsumoto M, Seya T (2015) DDX60 is involved in RIG-I-dependent and independent antiviral responses, and its function is attenuated by virus-induced EGFR activation. Cell Rep 11:1193–1207

    Article  CAS  PubMed  Google Scholar 

  • Palha N, Guivel-Benhassine F, Briolat V, Lutfalla G, Sourisseau M, Ellett F, Wang CH, Lieschke GJ, Herbomel P, Schwartz O, Levraud JP (2013) Real-time whole-body visualization of Chikungunya virus infection and host interferon response in zebrafish. PLoS Pathog 9:e1003619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers AM, Logue CH (2007) Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88:2363–2377

    Article  CAS  PubMed  Google Scholar 

  • Priya R, Patro IK, Parida MM (2014) TLR3 mediated innate immune response in mice brain following infection with Chikungunya virus. Virus Res 189:194–205

    Article  CAS  PubMed  Google Scholar 

  • Ramful D, Carbonnier M, Pasquet M, Bouhmani B, Ghazouani J, Noormahomed T, Beullier G, Attali T, Samperiz S, Fourmaintraux A, Alessandri JL (2007) Mother-to-child transmission of Chikungunya virus infection. Pediatr Infect Dis J 26:811–815

    Article  PubMed  Google Scholar 

  • Reynaud JM, Kim DY, Atasheva S, Rasalouskaya A, White JP, Diamond MS, Weaver SC, Frolova EI, Frolov I (2015) IFIT1 differentially interferes with translation and replication of alphavirus genomes and promotes induction of type I interferon. PLoS Pathog 11:e1004863

    Article  PubMed  PubMed Central  Google Scholar 

  • Robin S, Ramful D, Le Seach F, Jaffar-Bandjee MC, Rigou G, Alessandri JL (2008) Neurologic manifestations of pediatric chikungunya infection. J Child Neurol 23:1028–1035

    Article  PubMed  Google Scholar 

  • Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, Chapman R, Hertzog PJ (2013) Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res 41:D1040–D1046

    Article  CAS  PubMed  Google Scholar 

  • Ryman KD, Klimstra WB (2008) Host responses to alphavirus infection. Immunol Rev 225:27–45

    Article  CAS  PubMed  Google Scholar 

  • Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8:559–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savarin C, Bergmann CC (2008) Neuroimmunology of central nervous system viral infections: the cells, molecules and mechanisms involved. Curr Opin Pharmacol 8:472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen GC (2001) Viruses and interferons. Annu Rev Microbiol 55:255–281

    Article  CAS  PubMed  Google Scholar 

  • Sreekumar E, Issac A, Nair S, Hariharan R, Janki MB, Arathy DS, Regu R, Mathew T, Anoop M, Niyas KP, Pillai MR (2010) Genetic characterization of 2006-2008 isolates of Chikungunya virus from Kerala, South India, by whole genome sequence analysis. Virus Genes 40:14–27

    Article  CAS  PubMed  Google Scholar 

  • Suthar MS, Brassil MM, Blahnik G, McMillan A, Ramos HJ, Proll SC, Belisle SE, Katze MG, Gale M Jr (2013) A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes. PLoS Pathog 9:e1003168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter M, Myers TG, Wilson MA, Kindt TJ, Paweska JT, Burt FJ, Leman PA, Swanepoel R (2005) Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology 342:119–140

    Article  CAS  PubMed  Google Scholar 

  • Werneke SW, Schilte C, Rohatgi A, Monte KJ, Michault A, Arenzana-Seisdedos F, Vanlandingham DL, Higgs S, Fontanet A, Albert ML, Lenschow DJ (2011) ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation. PLoS Pathog 7:e1002322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JA, Prow NA, Schroder WA, Ellis JJ, Cumming HE, Gearing LJ, Poo YS, Taylor A, Hertzog PJ, Di Giallonardo F, Hueston L, Le Grand R, Tang B, Le TT, Gardner J, Mahalingam S, Roques P, Bird PI, Suhrbier A (2017) RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLoS Pathog 13:e1006155

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong MT, Chen SS (2016) Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell Mol Immunol 13:11–35.l

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Wang N, Woodson SE, Dong Q, Wang J, Liang Y, Rijnbrand R, Wei L, Nichols JE, Guo JT, Holbrook MR, Lemon SM, Li K (2011) Antiviral activities of ISG20 in positive-strand RNA virus infections. Virology 409:175–188

    Article  CAS  PubMed  Google Scholar 

  • Ziegler SA, Lu L, da Rosa AP, Xiao SY, Tesh RB (2008) An animal model for studying the pathogenesis of chikungunya virus infection. Am J Trop Med Hyg 79:133–139

    PubMed  Google Scholar 

  • Zou W, Kim JH, Handidu A, Li X, Kim KI, Yan M, Li J, Zhang DE (2007) Microarray analysis reveals that type I interferon strongly increases the expression of immune-response related genes in Ubp43 (Usp18) deficient macrophages. Biochem Biophys Res Commun 356:193–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY (2016) Coronaviruses—drug discovery and therapeutic options. Nat Rev Drug Discov 15:327–347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, RGCB for the infrastructure facilities; Mr. Dinesh R, Genomic Core facility, RGCB Bio-innovation Centre, Thiruvananthapuram and Ms. Anju, Histopathology Core facility, RGCB for technical assistance with microarray and histopathology analyses, respectively. The authors are thankful to Dr. Tessy Thomas Maliekal for helping with microscopic imaging of histopathology sections. SRN is a Research Scholar of University of Kerala.

Funding

Authors acknowledge funding from Department of Biotechnology (DBT), Government of India (No.BT/PR13801/MED/29/952/2015). SRN acknowledges the Kerala Veterinary and Animal Sciences University (KVASU) for financial support through Faculty Improvement Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Easwaran Sreekumar.

Ethics declarations

All virus infection and animal handling expreriments were done as per the approved protocols by Institutional Bio-safety Committee (IBSC) and  Institutional Animal  Ethics Committee (IAEC).

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, S.R., Abraham, R., Sundaram, S. et al. Interferon regulated gene (IRG) expression-signature in a mouse model of chikungunya virus neurovirulence. J. Neurovirol. 23, 886–902 (2017). https://doi.org/10.1007/s13365-017-0583-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-017-0583-3

Keywords

Navigation