Skip to main content
Log in

New routes for transgenesis of the mouse

  • Animal Genetics • Review
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Transgenesis refers to the molecular genetic techniques for directing specific insertions, deletions and point mutations in the genome of germ cells in order to create genetically modified organisms (GMO). Genetic modification is becoming more practicable, efficient and predictable with the development and use of a variety of cell and molecular biology tools and DNA sequencing technologies. A collection of plasmidial and viral vectors, cell-type specific promoters, positive and negative selectable markers, reporter genes, drug-inducible Cre-loxP and Flp/FRT recombinase systems are available which ensure efficient transgenesis in the mouse. The technologies for the insertion and removal of genes by homologous-directed recombination in embryonic stem cells (ES) and generation of targeted gain- and loss-of function alleles have allowed the creation of thousands of mouse models of a variety of diseases. The engineered zinc finger nucleases (ZFNs) and small hairpin RNA-expressing constructs are novel tools with useful properties for gene knockout free of ES manipulation. In this review we briefly outline the different approaches and technologies for transgenesis as well as their advantages and disadvantages. We also present an overview on how the novel integrative mouse and human genomic databases and bioinformatics approaches have been used to understand genotype-phenotype relationships of hundreds of mutated and candidate disease genes in mouse models. The updating and continued improvements of the genomic technologies will eventually help us to unraveling the biological and pathological processes in such a way that they can be translated more efficiently from mouse to human and vise-versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD, Brown SD (2008) ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 9:49–69

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    PubMed  CAS  Google Scholar 

  • Birling MC, Gofflot F, Warot X (2009) Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol 561:245–263

    Article  PubMed  CAS  Google Scholar 

  • Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT, the Mouse Genome Database Group (2011) The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucl Acids Res 39(suppl 1):D842–D848

    Article  PubMed  Google Scholar 

  • Bolon B (2006) Internet resources for phenotyping engineered rodents. ILAR J 47(2):163–171

    PubMed  CAS  Google Scholar 

  • Boydn SD (2008) Everything you wanted to know about small RNA but were afraid to ask. Lab Invest 88:569–579

    Article  Google Scholar 

  • Brackett BG, Baranska W, Sawicki W, Koprowski H (1971) Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA 68:353–357

    Article  PubMed  CAS  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Develop Cell 6:7–28

    Article  CAS  Google Scholar 

  • Brandon EP, Iszerda RL, McNight GS (1995) Targeting the mouse genome: a compendium of knockouts. Curr Biol 5:873–881

    Article  PubMed  CAS  Google Scholar 

  • Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimeras from embryo-derived teratocarcionma cell lines. Nature 309:255–257

    Article  PubMed  CAS  Google Scholar 

  • Bressan F, Miranda M, Perecin F, De Bem TH, Pereira F, Russo-Carbolante F, Alves D, Strauss D, Bajgelman D, Krieger JE, Binelli M, Meirelles FV (2011) Improved production of genetically modified fetuses with homogeneous transgene expression after transgene integration site analysis and recloning in cattle. Cell Reprogram 13(1):1–10

    Article  Google Scholar 

  • Bryda EC, Bauer BA (2010) A restriction enzyme-PCR-based technique to determine transgene insertion sites. Methods Mol Biol 597:287–299

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    Article  PubMed  CAS  Google Scholar 

  • Carrol D (2008) Progress and prospects: zinc finger nucleases as gene therapy agents. Gene Ther 15:1463–1468

    Article  Google Scholar 

  • Chan W, Costantino N, Li R, Lee SC, Su Q, Melvin D, Court D, Liu P (2007) A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nuclei Acids Res 35(8):e64

    Article  Google Scholar 

  • Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X et al. (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7:e1000112

    Article  PubMed  Google Scholar 

  • Cohen SN, Chang ACY, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Nat Acad Sci USA 70:3240–3244

    Article  PubMed  CAS  Google Scholar 

  • Collins FS, Rossant J (2007) A mouse for all reasons. Cell 128:9–13

    Article  PubMed  CAS  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Porteus M, Chandrasegaran S (2005) Zinc finger nucleases: Custom designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990

    Article  PubMed  CAS  Google Scholar 

  • Durbin RM, Abecasis GR, Altshuler DL, The 1000 Genomes Project Consortium et al. (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Flicek P, Ridwan Amode M, Barrell D, Beal K, Brent S et al. (2011) Ensembl 2011. Nucl Acids Res 39(suppl 1):D800–D806

    Article  PubMed  Google Scholar 

  • Fox JG, Barthold SW, Davisson MT, Newcomer CE, Quimby FW, Smith AL eds (2007). In: The mouse in biomedical research. 2nd edn., vol 1–4. Elsevier, Burlington, MA

  • Fuchs H, Gailus-Durner V, Adler T, Aguilar-Pimentel JA, Becker L (2011) Mouse phenotyping. Methods 53:120–135

    Article  PubMed  CAS  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC et al. (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433–435

    Article  PubMed  CAS  Google Scholar 

  • Goh K-I, Cusik ME, Valle D, Childs B, Vidal M, Barabási A-L (2007) The human disease network. Proc Nat Acad Sci USA 104(21):8686–8690

    Article  Google Scholar 

  • Gordon JW, Scangos GA, Plotkin DJ, Barbosa A, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Nat Acad Sci USA 77:7380–7384

    Article  PubMed  CAS  Google Scholar 

  • Gordon JW, Ruddle FH (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214:1244–1246

    Article  PubMed  CAS  Google Scholar 

  • Guenet J-L (2004) Chemical mutagenesis of the mouse genome: an overview. Genetica 122:9–24

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelial cell of feeding tadpoles. J Embryol Exp Morph 10:622–640

    PubMed  CAS  Google Scholar 

  • Gurdon JB, Byrne JA, Simonsson S (2003) Nuclear reprogramming and stem cell creation. Proc Natl Acad Sci USA 100(Suppl 1):11819–11822

    Article  PubMed  CAS  Google Scholar 

  • Han Z, Cheng Y, Liang C-G, Latham KE (2010) Nuclear transfer in mouse oocytes and embryos. Methods Enzymol 476:171–184

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, McMahon AP (2001) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Develop Biol 244(2):305–318

    Article  Google Scholar 

  • Haurogne K, Bach JM, Lieubeau B (2007) Easy and rapid method of zygosity determination in transgenic mice by SYBR green real-time quantitative PCR with a simple data analysis. Transgenic Res 16:127–131

    Article  PubMed  CAS  Google Scholar 

  • Heyer W-D, Ehmsen LT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Ann Rev Genet 44:113–139

    Article  PubMed  CAS  Google Scholar 

  • Hofker MH, Deursen JV Eds (2003) In: Transgenic mouse methods and protocols. Meth Mol Biol vol. 209, Humana, Totowa, NJ, USA

  • Horner VL, Wolfner MF (2008) Transitioning from egg to embryo: triggers and mechanisms of egg Activation. Dev Dyn 237:527–544

    Article  PubMed  CAS  Google Scholar 

  • Ittner LM, Gotz J (2007) Pronuclear injection for the production of transgenic mice. Nat Protocol 2(5):1206–1215

    Article  CAS  Google Scholar 

  • Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132:567–582

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R (1976) Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci USA 73:1260–1264

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2004) Transgenic mice produced by retroviral transduction of male germ line stem cells in vivo. Biol Reprod 71(4):1202–1207

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2005) Genetic selection of mouse male germline stem cells in vitro: offspring from single stem cells. Biol Reprod 72:236–240

    Google Scholar 

  • Kane NM, McRae S, Denning C, Baker AH (2008) Viral and non-viral gene delivery and its role in pluripotent stem cell engineering. Drug Disc Today 5(4):e107–e115

    Article  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160

    Article  PubMed  CAS  Google Scholar 

  • Kim J-S, Lee HJ, Carrol D (2010) Genome editing with modularly assembled zinc-finger nucleases. Nat Methods 7(2):91

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Gen 8:173–184

    Article  CAS  Google Scholar 

  • Kim JI, Ju YS, Park H, Kim S, Lee S, Yi JH, Mudge J, Miller NA et al. (2009) A highly annotated whole-genome sequence of a Korean individual. Nature 460:1011–1015

    PubMed  CAS  Google Scholar 

  • Kimura Y, Yanagimachi R (1995) Intracytoplasmic sperm injection in the mouse. Biol Reprod 52:709–720

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Brinster RL (2006) Technology insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat Clin Pract Endocrinol Metab 2(2):99–108

    Article  PubMed  CAS  Google Scholar 

  • Kunath T, Strumpf D, Rossant J (2004) Early trophoblast determination and stem cell maintenance in the mouse - a review. Placenta 18:S32–S38

    Article  Google Scholar 

  • Ledermann B (2000) Embryonic stem cells and gene targeting. Exp Physiol 85:603–613

    Article  PubMed  CAS  Google Scholar 

  • Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–60

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown E, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral. Science 295:868–872

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Zhang Q, Deng M, Miao J, Guo Y et al. (2008) An analysis of human microRNA and disease associations. PLoS One 3(10):e3420

    Article  PubMed  Google Scholar 

  • Manolio TA, Brooks LD, Collins FC (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118:1590–1605

    Article  PubMed  CAS  Google Scholar 

  • Martin G (1981) Isolation of a pluripotent cell line from early mouse embryous cultured in medium conditioned by teratocarcionma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  • Moreira PN, Giraldo P, Cozar P, Pozueta J, Jimenez A, Montoliu L, Gutierrez-Adan A (2004) Efficient generation of transgenic mice with intact yeast artificial chromosomes by intracytoplasmic sperm injection. Biol Reprod 71:1943–1947

    Article  PubMed  CAS  Google Scholar 

  • Nagano M, Shinohara T, Avarbock MR, Brinster RL (2000) Retrovirus-mediated gene delivery into male germ line stem cells. FEBS Lett 475:7–10

    Article  PubMed  CAS  Google Scholar 

  • Nagano M, Watson DJ, Ryu BY, Wolfe JH, Brinster RL (2002) Lentiviral vector transduction of male germ line stem cells in mice. FEBS Lett 524:111–115

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Gertsenstein M, Vintersten K, Behringer R eds (2003) In: Manipulating the mouse embryo, 3rd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • Nagy A, Mar L, Watts G (2009) Creation and use of a Cre recombinase transgenic database. Methods Mol Biol 530:365–378

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Nagy K, Gertsenstein M (2010) Production of mouse chimeras by aggregating pluripotent stem cells with embryos. Methods Enzymol 476:123–149

    Article  PubMed  CAS  Google Scholar 

  • Nguyen D, Xu T (2008) The expanding role of mouse genetics for understanding human biology and disease. Dis Model Mech 1:56–66

    Article  PubMed  Google Scholar 

  • Nishikawa S-I, Goldstein RA, Nierras CR (2008) The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9(9):725–729

    Article  PubMed  CAS  Google Scholar 

  • Olive V, Cuzin F (2005) The spermatogonial stem cell: from basic knowledge to transgenic technology. Intl J Biochem Cell Biol 37:246–250

    Article  CAS  Google Scholar 

  • Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31:159–173

    Article  PubMed  CAS  Google Scholar 

  • Perry AC, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, Yanagimachi R (1999) Mammalian transgenesis by intracytoplasmic sperm injection. Science 284:1180–1183

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A (2004) Lentiviral transgenesis. Transg Res 13:513–522

    Article  CAS  Google Scholar 

  • Pfeifer A, Lim T, Zimmermann K (2010) Lentivirus transgenesis. Methods Enzymol 477:3–15

    Article  PubMed  CAS  Google Scholar 

  • Prawitt D, Brixel L, Spangenberg C, Eshkind L, Heck R, Oesch F, Zabel B, Bockampb E (2004) RNAi knock-down mice: an emerging technology for post-genomic functional genetics. Cytogenet Gen Res 105:412–421

    Article  CAS  Google Scholar 

  • Premsrirut PK, Dow LE, Kim SY, Camiolo M, Malone CD, Miething C, Scuoppo C, Zuber J, Dickins RA, Kogan SC, Shroyer KR, Sordella R, Hannon GJ, Lowe SW (2011) A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145:145–158

    Article  PubMed  CAS  Google Scholar 

  • Ringwald M, Iyer V, Mason JC, Stone KR, Tadepally HD et al. (2011) The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium. Nucl Acids Res 39(suppl 1):D849–D855

    Article  PubMed  Google Scholar 

  • Rossant J, Tam PPL eds (2002) In: Mouse development: patterning, morphogenesis, and organogenesis. First edn., Academic, London

  • Ryu BY, Orwig KE, Oatley JM, Lin CC, Chang LJ, Avarbock MR, Brinster RL (2007) Efficient generation of transgenic rats through the male germline using lentiviral transduction and transplantation of spermatogonial stem cells. J Androl 28:353–360

    Article  PubMed  CAS  Google Scholar 

  • Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L et al. (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 105:5809–5814

    Article  PubMed  CAS  Google Scholar 

  • Saunderns TL (2010) A survey of internet resources for mouse development. Meth Enzymol 476:1–21

    Google Scholar 

  • Sandhu GS, Solorio L, Broome AM, Salem N, Kolthammer J, Shah T, Flaskand C, Duerk JL (2010) Whole animal imaging. WIREs Syst Biol Med 2:398–421

    Article  Google Scholar 

  • Sharpless NE, Depinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Rev Drug Disc 5(9):741–754

    Article  CAS  Google Scholar 

  • Seibler J, Kuter-Luks B, Kern H, Streu S, Plim L, Mauer J, Kuhn R, Bruning JC, Schwenck F (2005) Single nucleotide shRNA configuration for ubiquitous gene knockdown in mice. Nucl Acids Res 33:3–10

    Article  Google Scholar 

  • Singer O, Verma IM (2008) Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther 8(6):483–488

    Article  PubMed  CAS  Google Scholar 

  • Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317:230–234

    Article  PubMed  CAS  Google Scholar 

  • Szulc J, Wiznerowicz M, Sauvain M-O, Trono D, Aebischer P (2006) A versatile tool for conditional gene expression and knockdown. Nat Methods 3(2):109–116

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Thuan NV, Kishigami S, Wakayama T (2010) How to improve the success rate of mouse cloning technology. J Reprod Dev 56(1):20–30

    Article  PubMed  Google Scholar 

  • Tesson L, Cozzi J, Menoret S, Remy S, Usal C, Fraichard A, Anegon I (2005) Transgenic modification of the rat genome. Transg Res 14:531–546

    Article  CAS  Google Scholar 

  • Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryonic stem cells. Cell 51:503–512

    Article  PubMed  CAS  Google Scholar 

  • Tiscornia G, Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protocol 1(1):241–245

    Article  CAS  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Steve Zhang H, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W et al. (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21:652–659

    Article  PubMed  CAS  Google Scholar 

  • Van der Weyden L, Adams DJ, Bradley A (2002) Tools for targeted manipulation of the mouse genome. Physiol Genomics 11:133–164

    PubMed  Google Scholar 

  • Van der Weyden L, White JK, Adams DJ, Logan DW (2011) The mouse genetics toolkit: revealing function and mechanism. Genome Biol 12:224

    Article  PubMed  Google Scholar 

  • Washington NL, Haendel MA, Mungall CJ, Ashburner M, Westerfield M, Lewis SE (2009) Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol 7(11):e1000247

    Article  PubMed  Google Scholar 

  • Whitworth KM, Prather RS (2010) Somatic cell nuclear transfer efficiency: how can it be improved through nuclear remodeling and reprogramming? Mol Reprod Dev 77:1001–1015

    Article  PubMed  CAS  Google Scholar 

  • Wilmut I, Schinieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Zaehres H, Kim JB, Scholer HR (2010) Induced pluripotent stem cells. Methods Enzymol 476:309–325

    Article  PubMed  CAS  Google Scholar 

  • Zhao G-Q, Garbers DL (2002) Male germ cell specification and differentiation. Dev Cell 2:537–547

    Article  PubMed  CAS  Google Scholar 

  • Zinn KR, Chaudhuri TR, Szafran AA, O’Quinn D et al. (2008) Noninvasive bioluminescence imaging in small animals. ILAR J 49(1):103–115

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr Flávio Meireles (Department of Basic Sciences, School of Veterinary and Zootechny - USP), Silvia Massironi (Department of Immunology of Institute of Biomedical Sciences - USP) for their contributions and support and David Baltimore (California Institute of Technology, Pasadena, CA) for permission of using the lentivirus vector pFUGW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Belizário.

Additional information

Research supported by CNPq (proc. 452226/2007-4, 455204/2010-1), FAPESP (proc 2005/56909-0) and ICGEB (CRP/BRA08-01).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belizário, J.E., Akamini, P., Wolf, P. et al. New routes for transgenesis of the mouse. J Appl Genetics 53, 295–315 (2012). https://doi.org/10.1007/s13353-012-0096-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-012-0096-y

Keywords

Navigation