Skip to main content
Log in

A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

This study uses a set of PCR-based methods to examine the putative microbiota associated with lichen thalli. In initial experiments, generalized oligonucleotide-primers for the 16S rRNA gene resulted in amplicon pools populated almost exclusively with fragments derived from lichen photobionts (i.e., Cyanobacteria or chloroplasts of algae). This effectively masked the presence of other lichen-associated prokaryotes. In order to facilitate the study of the lichen microbiota, 16S ribosomal oligonucleotide-primers were developed to target Bacteria, but exclude sequences derived from chloroplasts and Cyanobacteria. A preliminary microbiotic survey of lichen thalli using these new primers has revealed the identity of several bacterial associates, including representatives of the extremophilic Acidobacteria, bacteria in the families Acetobacteraceae and Brucellaceae, strains belonging to the genus Methylobacterium, and members of an undescribed lineage in the Rhizobiales. This new lineage was investigated and characterized through molecular cloning, and was found to be present in all examined lichens that are associated with green algae. There is evidence to suggest that members of this lineage may both account for a large proportion of the lichen-associated bacterial community and assist in providing the lichen thallus with crucial nutrients such as fixed nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul S, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59:143–169

    CAS  PubMed  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: Are lichens cradles of symbiotrophic fungal diversification? Systematic Biology 58:283–297

    Article  CAS  PubMed  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Applied and Environmental Microbiology 71:7724–7736

    Article  CAS  PubMed  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Applied and Environmental Microbiology 72:5734–5741

    Article  CAS  PubMed  Google Scholar 

  • Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Applied and Environmental Microbiology 65:1731–1737

    CAS  PubMed  Google Scholar 

  • Brodo IM (1973) Substrate ecology. In: Ahmadjihan V, Hale ME (eds) The Lichens. Academic Press, New York and London, pp 401–441

    Google Scholar 

  • Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiology Ecology 57:484–495

    Article  CAS  PubMed  Google Scholar 

  • Cardinale M, Castro JV, Müller H, Berg G, Grube M (2008) In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiology Ecology 66:63–71

    Article  CAS  PubMed  Google Scholar 

  • Cengia-Sambo M (1923) Polisimbiosi nei licheni a cianoficee e significato biologico dei cefalodi (Note di Biochimica dei licheni). Atti de la Societa Italiana di Scienze Naturali (Milano) 62:226

    Google Scholar 

  • Cengia-Sambo M (1925) Ancora della polisimbiosi nei licheni ad alghe cianoficee. I batteri simbionti. Atti de la Societa Italiana di Scienze Naturali (Milano) 64:191

    Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Research 33:D294–D296

    Article  CAS  PubMed  Google Scholar 

  • Culberson CF, Culberson WL, Johnson A (1984) Secondary compounds produced exclusively by lichens. In: Laskin AI, Lechevalier HA (eds) CRC Handbook of Microbiology, vol 5. Boca Raton, FL, pp 793–833

    Google Scholar 

  • De la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology 69:3858–3867

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Systematic Biology 50:470–478

    Article  CAS  PubMed  Google Scholar 

  • DePriest PT (2004) Early molecular investigations of lichenforming symbionts: 1986–2001. Annual Review of Microbiology 58:273–301

    Article  CAS  PubMed  Google Scholar 

  • Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gallego V, García MT, Ventosa A (2005) Methylobacterium isbiliense sp. nov., isolated from the drinking water system of Sevilla, Spain. International Journal of Systematic and Evolutionary Microbiology 55:2333–2337

    Article  CAS  PubMed  Google Scholar 

  • Gaya E, Lutzoni F, Zoller S, Navarro-Rosinés P (2003) Phylogenetic study of Fulgensia and allied Caloplaca, and Xanthoria species (Teloschistaceae, lichen-forming Ascomycota). American Journal of Botany 90:1095–1103

    Article  CAS  Google Scholar 

  • Gaya E, Navarro-Rosinés P, Llimona X, Hladun N, Lutzoni F (2008) Phylogenetic reassessment of the Teloschistaceae (lichen-forming Ascomycota, Lecanoromycetes). Mycological Research 112:528–546

    Article  PubMed  Google Scholar 

  • González I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: Evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiology Ecology 54:401–415

    Article  PubMed  CAS  Google Scholar 

  • Grube M, Cardinale M, Vieira de Castro J, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. The ISME Journal 3:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Helms G, Friedl T, Rambold G, Mayrhofer H (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. The Lichenologist 33:73–86

    Article  Google Scholar 

  • Henckel PA (1938) On the lichen symbiosis. Bulletin of the Moscow Society of Naturalists: Biology Series 47:13

    Google Scholar 

  • Henckel PA, Plotnikova TT (1973) Nitrogen-fixing bacteria in lichens. Proceedings of the Academy of Sciences of the USSR: Biology Series 6:807–813, translated from Russian by Erik McDonald

    Google Scholar 

  • Henckel PA, Yuzhakova LA (1936) On the role of Azotobacter in the lichen symbiosis. Bulletin of the Perm (Molotov) Biological Research Institute 10:315

    Google Scholar 

  • Hillis, D.M., Morritz, C., and Mabel, B.K. 1996. Molecular Systematics (2nd ed.). Sinauer Associates Inc., Sunderland, MA.

  • Hodkinson BP, Lutzoni FM, Loveless TM, Bishop PE (2006) Non-photosynthetic bacteria and the lichen symbiosis. In: Bright M, Horn M, Zook D, Lücker S, Kolar I (eds) 5th International Symbiosis Society Congress: Program, Abstracts, Participants (Vienna, Austria). Promare, Gdynia, Poland, p 95

    Google Scholar 

  • Hodkinson, B.P. and Lutzoni, F. 2009. Secret alliances: Patterns of association between lichens and non-photobiont bacteria. In: Botany and Mycology 2009: Abstract Book (Snowbird, Utah). Botanical Society of America, Granville, OH, pg. 249.

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of Lichen Substances. Springer, Berlin, Germany, p 493

    Google Scholar 

  • Hunter EM, Mills HJ, Kostka JE (2006) Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Applied and Environmental Microbiology 72:5689–5701

    Article  CAS  PubMed  Google Scholar 

  • Ingolfsdottir K, Bloomfield SF, Hylands PJ (1985) In vitro evaluation of the antimicrobial activity of lichen metabolites as potential preservatives. Antimicrobial Agents and Chemotherapy 28:289–292

    CAS  PubMed  Google Scholar 

  • Iskina RY (1938) On nitrogen-fixing bacteria in lichens. Bulletin of the Perm (Molotov) Biological Research Institute 11:113

    Google Scholar 

  • Jensen MA, Webster JA, Straus N (1993) Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Applied and Environmental Microbiology 59:945–952

    CAS  PubMed  Google Scholar 

  • Kjer KM (1995) Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Molecular Phylogenetics and Evolution 4:314–330

    Article  CAS  PubMed  Google Scholar 

  • Krasil’nikov NA (1949) Is Azotobacter present in lichens? Mikrobiologiia 18:3

    Google Scholar 

  • Lambright DD, Kapustka LA (1981) The association of N2-fixing bacteria with Dermatocarpon miniatum and Lepraria sp. Botanical Society of America: Miscellaneous Serial Publication 160:5

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York, NY, pp 115–175

    Google Scholar 

  • Lawrey JD (1989) Lichen secondary compounds: Evidence for a correspondence between antiherbivore and antimicrobial function. The Bryologist 92:326–328

    Article  CAS  Google Scholar 

  • Lee KB, Liu CT, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 55:1907–1919

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Liba CM, Ferrara FIS, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira CA, Barbosa HR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. Journal of Applied Microbiology 101:1076–1086

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for microbial community analysis. Nucleic Acids Research 35:e120

    Article  PubMed  CAS  Google Scholar 

  • Lücking R, Lawrey JD, Sikaroodi M, Gillevet PM, Chaves JL, Sipman HJM, Bungartz F (2009) Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. American Journal of Botany 96:1409–1418

    Article  CAS  Google Scholar 

  • Lutzoni F, Wagner P, Reeb V, Zoller S (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49:628–651

    Article  CAS  PubMed  Google Scholar 

  • Maddison, D. and Maddison, W. 2002. MacClade version 4.03PPC: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, MA.

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  Google Scholar 

  • Miadlikowska J, Lutzoni F (2004) Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. American Journal of Botany 91:449–464

    Article  CAS  Google Scholar 

  • Miadlikowska J, Kauff F, Hofstetter V, Fraker E, Grube M, Hafellner J, Reeb V, Hodkinson BP, Kukwa M, Lücking R, Hestmark G, Garcia Otalora M, Rauhut A, Büdel B, Scheidegger C, Timdal E, Stenroos S, Brodo I, Perlmutter G, Ertz D, Diederich P, Lendemer JC, May P, Schoch CL, Arnold AE, Gueidan C, Tripp E, Yahr R, Robertson C, Lutzoni F (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98:1088–1103

    Article  CAS  PubMed  Google Scholar 

  • Müller K (2001) Pharmaceutically relevant metabolites from lichens. Applied Microbiology and Biotechnology 56:9–16

    Article  PubMed  Google Scholar 

  • Ngom A, Nakagawa Y, Sawada H, Tsukahara J, Wakabayashi S, Uchiuimi T, Nuntagij A, Kotepong S, Suzuki A, Higashi S, Abe M (2004) A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. Journal of General and Applied Microbiology 50:17–27

    Article  CAS  PubMed  Google Scholar 

  • Niner BM, Hirsch AM (1998) How many Rhizobium genes, in addition to nod, nif/fix, and exo, are needed for nodule development? Symbiosis 24:51–102

    CAS  Google Scholar 

  • Nylander, J.A.A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. Rambaut, A. and Drummond, A.J. 2007. Tracer v1.4. Available from http://beast.bio.ed.ac.uk/Tracer.

  • Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annual Review of Microbiology 57:369–394

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (2002) The evolution of cyanobacterial symbioses. Biology and Environment – Proceedings of the Royal Irish Academy 102B:3–6

    Article  Google Scholar 

  • Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the Pezizomycotina (euascomycetes, Fungi) with special emphasis on the lichenforming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution 32:1036–1060

    Article  CAS  PubMed  Google Scholar 

  • Richardson DHS, Cameron RP (2004) Cyanolichens: their response to pollution and possible management strategies for their conservation in northeastern North America. Northeastern Naturalist 11:1–22

    Article  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal 1:283–290

    CAS  PubMed  Google Scholar 

  • Rondon MR, Goodman RM, Handelsman J (1999) The Earth's bounty: assessing and accessing soil microbial diversity. Trends in Biotechnology 17:403–409

    Article  CAS  PubMed  Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiology Reviews 25:39–67

    Article  PubMed  Google Scholar 

  • Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2008) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microbial Ecology 55:130–140

    Article  CAS  PubMed  Google Scholar 

  • Schuster G, Ott S, Jahns HM (1985) Artificial cultures of lichens in the natural environment. The Lichenologist 17:247–253

    Article  Google Scholar 

  • Stackebrandt, E. and Rainey, F.A. 1995. Partial and complete 16S rDNA sequences, their use in generation of 16S rDNA phylogenetic trees and their implications in molecular ecological studies. In: Molecular Microbial Ecology Manual (vol. 3.1.1). Kluwer Academic Publishers, The Netherlands, pp. 1–17.

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stocker-Wörgötter E (2001) Experimental lichenology and microbiology of lichens. The Bryologist 104:576–581

    Article  Google Scholar 

  • Swofford DL (2001) PAUP*: Phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. Journal of Bacteriology 183:214–220

    Article  CAS  PubMed  Google Scholar 

  • Thornhill DJ, Lajeunesse TC, Santos SR (2007) Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Molecular Ecology 16:5326–5340

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The Human Microbiome Project. Nature 449:804–810

    Article  CAS  PubMed  Google Scholar 

  • Vartia KO (1950) On antibiotic effects of lichens and lichen substances. Annales Medicinae Experimentalis et Biologiae Fenniae 28:1–82

    CAS  PubMed  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172:4238–4246

    CAS  PubMed  Google Scholar 

  • Wang GCY, Wang Y (1997) Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. Applied and Environmental Microbiology 63:4630–4645

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173:697–703

    CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiology Reviews 51:221–271

    CAS  Google Scholar 

  • Young JPW (1992) Phylogenic classification of nitrogen-fixing organisms. In: Stacy G, Burris RH, Evans HJ (eds) Biological Nitrogen Fixation. Chapman and Hall, New York, NY, pp 43–86

    Google Scholar 

  • Zakharova ND (1938) Izv[estiia] biol[ogicheskogo] n[auchno]-i[ssledovatl’nogo] in[stitu]ta pri Permskom gos[udarstvennom] un[iversi]te. Proceedings of the Biological Scientific Research Institute of Perm State University 11:5–6

    Google Scholar 

  • Zhiyong L, Hu Y, Liu Y, Huang Y, He L, Miao X (2007) 16S clone library-based bacterial phylogenetic diversity associated with three South China Sea sponges. World Journal of Microbiology and Biotechnology 23:1265–1272

    Article  CAS  Google Scholar 

  • Zolan ME, Pukkila PJ (1986) Inheritance of DNA methylation in Coprinus cinereus. Molecular and Cellular Biology 6:195–200

    CAS  PubMed  Google Scholar 

  • Zook, D. 1983. A study of the role of bacteria in lichens. Masters Thesis, Clark University, 87 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan P. Hodkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodkinson, B.P., Lutzoni, F. A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49, 163–180 (2009). https://doi.org/10.1007/s13199-009-0049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-009-0049-3

Keywords

Navigation