Skip to main content
Log in

Sympatric lineage divergence in cryptic Neotropical sweat bees (Hymenoptera: Halictidae: Lasioglossum)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Given ongoing biodiversity decline, an important concern is that a large fraction of species diversity is not yet documented. Correct delimitation of species remains a challenge, especially for small and morphologically uniform groups such as sweat bees (Halictidae). Here, we applied an integrative taxonomic approach to study diversity within the Neotropical sweat bee subgenus Dialictus (genus Lasioglossum). We used four statistical methods to delimit species based on cytochrome oxidase subunit I gene sequences: Automatic Barcode Gap Discovery (ABGD), two variants of the General Mixed Yule Coalescent (single-threshold (stGMYC) and Bayesian (bGMYC)) and the Refined Single Linkage analysis (RESL). We detected eight principal molecular operational taxonomic units (mOTUs). Subsequently, these lineages were evaluated using ten nuclear microsatellite loci and morphological and ecological analyses. Most mOTUs could be differentiated using microsatellites and morphology (82 % identified correctly), further supporting the status of mOTUs as independent biological units. For the two most widespread mOTUs, we analysed intra-lineage geographic variation using microsatellites but did not detect additional substructuring. We further tested if the lineages showed predictable patterns of co-occurrence and habitat preferences. While we did not find any evidence of preferential association or disassociation between taxa, we detected a slight positive effect of high crop cover favouring the abundance of some lineages. We show that integrated approaches using statistical analysis of DNA barcodes jointly with additional data can provide robust and objective means of delimiting species in morphologically difficult groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abizaid, C., & Coomes, O. T. (2004). Land use and forest fallowing dynamics in seasonally dry tropical forests of the southern Yucatán Peninsula, Mexico. Land Use Policy, 21(1), 71–84.

    Article  Google Scholar 

  • Arantes Borges, A., de Oliveira Campos, L. A., Fernandes Salomão, T. M., & Garcia Tavares, M. (2010). Genetic variability in five populations of Partamona helleri (Hymenoptera, Apidae) from Minas Gerais State, Brazil. Genetics and Molecular Biology, 33(4), 781–784.

    Google Scholar 

  • Ascher, J. S., & Pickering, J. (2015). Bee species guide (Hymenoptera: Apoidea: Anthophila). Accessed Nov 2015.

  • Ballard, J. W. O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13(4), 729–744.

    Article  PubMed  Google Scholar 

  • Beckerman, A. (2000). Counterintuitive outcomes of interspecific competition between two grasshopper species along a resource gradient. Ecology, 81(4), 948–957.

    Article  Google Scholar 

  • Beheregaray, L. G., & Caccone, A. (2007). Cryptic biodiversity in a changing world. Journal of Biology, 6(4), 1–5.

    Article  Google Scholar 

  • Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., et al. (2006). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22(3), 148–155.

    Article  PubMed  Google Scholar 

  • Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., Rylands, A. B., Konstant, W. R., et al. (2002). Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology, 16(4), 909–923.

    Article  Google Scholar 

  • Brosi, B. J., Daily, G. C., Shih, T. M., Oviedo, F., & Durán, G. (2008). The effects of forest fragmentation on bee communities in tropical countryside. Journal of Applied Ecology, 45(3), 773–783.

    Article  Google Scholar 

  • Brown, M. J. F., & Paxton, R. J. (2009). The conservation of bees: a global perspective. Apidologie, 40(3), 410–416.

    Article  Google Scholar 

  • Cane, J. H. (2001). Habitat fragmentation and native bees: a premature verdict? Ecology and Society, 5(1) http://www.consecol.org/vol5/iss1/art3/.

  • Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology, 22(17), 4369–4383.

    Article  PubMed  Google Scholar 

  • Chazdon, R. (2003). Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 6(1–2), 51–71.

    Article  Google Scholar 

  • Clegg, S. M., Degnan, S. M., Moritz, C., Estoup, A., Kikkawa, J., & Owens, I. (2002). Microevolution in island forms: the roles of drift and directional selection in morphological divergence of a passerine bird. Evolution, 56(10), 2090–2099.

    Article  PubMed  Google Scholar 

  • Crawford, N. (2010). SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources, 10(3), 556–557.

    Article  PubMed  Google Scholar 

  • Darriba, D., Taboada, G., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Quieroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56(6), 879–886.

    Article  Google Scholar 

  • Dellicour, S., & Flot, J.-F. (2015). Delimiting species-poor data sets using single molecular markers: a study of barcode gaps, haplowebs and GMYC. Systematic Biology, 64(6), 900–908.

    Article  PubMed  Google Scholar 

  • Diemont, S. A. W., Bohn, J. L., Rayome, D. D., Kelsen, S. J., & Cheng, K. (2011). Comparisons of Mayan forest management, restoration, and conservation. Forest Ecology and Management, 261(10), 1696–1705.

    Article  Google Scholar 

  • Dieringer, D., & Schlötterer, C. (2003). Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes, 3(1), 167–169.

    Article  CAS  Google Scholar 

  • Drummond, A., Suchard, M., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duennes, M., Lozier, J., Hines, H., & Cameron, S. (2012). Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Molecular Phylogenetics and Evolution, 64(1), 219–231.

    Article  PubMed  Google Scholar 

  • Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361.

    Article  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611–2620.

  • Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.

  • Folmer, O., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299.

    CAS  PubMed  Google Scholar 

  • Francisco, F., Santiago, L., Brito, R., Oldroyd, B., & Arias, M. (2014). Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi. Apidologie, 45(1), 1–9.

    Article  Google Scholar 

  • Fujisawa, T., & Barraclough, T. (2009). splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-11/r29 15.

  • Fujisawa, T., & Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed Yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology, 62(5), 707–724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Galtier, N., Nabholz, B., Glémin, S., & Hurst, D. D. (2009). Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 18(22), 4541–4550.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, J. (2009). Integrative taxonomy identifies new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae). Zootaxa, 2032, 1–38.

    Google Scholar 

  • Gibbs, J. (2010). Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa, 31(2591), 1–382.

    Google Scholar 

  • Goldstein, P. Z., & DeSalle, R. (2010). Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. Bioessays, 33(2), 135–147.

    Article  Google Scholar 

  • González-Acereto, J. (2008). Cría y manejo de abejas nativas sin aguijón en México. Mexico: Planeta Impresores.

    Google Scholar 

  • González-Acereto, J., Quezada-Euán, J., & Medina-Medina, L. (2006). New perspectives for stingless beekeeping in the Yucatán: results of an integral program to rescue and promote the activity. Journal of Apicultural Research, 45(3), 234–239.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

    Google Scholar 

  • Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160–174.

  • Hedrick, P. (2011). Genetics of populations. Massachusetts: Jones and Bartelett Publishers.

    Google Scholar 

  • Herbert, P., Cywinska, A., Ball, S., & deWaard, J. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society London B: Biological Sciences, 270(1512), 313–321.

    Article  Google Scholar 

  • Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Husemann, M., Tobler, M., McCauley, C., Ding, B., & Danley, P. (2014). Evolution of body shape in differently coloured sympatric congeners and allopatric populations of Lake Malawi’s rock-dwelling cichlids. Journal of Evolutionary Biology, 27(5), 826–839.

    Article  CAS  PubMed  Google Scholar 

  • IBM Corp. (2013). IBM SPSS Statistics for Windows (22nd ed.). Armonk: IBM Corp.

    Google Scholar 

  • INEGI. (2006). Instituto Nacional de Estadística Geografia e Informática. www.inegi.gob.mx/inegi/default.asp Nov 2015.

  • Jaffé, R., Castilla, A., Pope, N., Imperatriz-Fonseca, V. L., Metzger, J. P., Arias, M. C., et al. (2015). Landscape genetics of a tropical rescue pollinator. Conservation Genetics, 17(2), 267–278.

    Article  Google Scholar 

  • Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801–1806.

    Article  CAS  PubMed  Google Scholar 

  • Katzner, T. E., Bragin, E. A., Knick, T., & Smith, T. (2003). Coexistence in a multispecies assemblage of eagles in central asia. Condor, 105(3), 538–551.

    Article  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious. Bioinformatics, 28(12), 1647–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society London B: Biological Sciences, 274(1608), 303–313.

    Article  Google Scholar 

  • Kukuk, P., Forbes, S., Zahorchack, R., Riddle, A., & Pilgrim, K. (2002). Highly polymorphic microsatellite markers developed for the social halictine bee Lasioglossum (Chilalictus) hemichalceum. Molecular Ecology Notes, 2(4), 529–530.

    Article  CAS  Google Scholar 

  • Li, P., Luo, Y., Bernhardt, P., Kou, Y., & Perner, H. (2008). Pollination of Cypripedium plectrochilum (Orchidaceae) by Lasioglossum spp. (Halictidae): the roles of generalist attractants versus restrictive floral architecture. Plant Biology, 10(2), 220–230.

    Article  CAS  PubMed  Google Scholar 

  • Michener, C. (2007). The Bees of the World. Baltimore, USA: John Hopkins University Press.

  • Mittermeier, R. A., Turner, W., Larsen, W., Brooks, T. M., & Gascon, C. (2004). Chapter 1. Global biodiversity conservation: the critical role of hotspots. In R. A. Mittermeier, P. Robles-Gil, M. Hoffmann, J. D. Pilgrim, T. M. Brooks, C. G. Mittermeier, et al. (Eds.), Hotspots revisited: earth’s biologically richest and most endangered ecoregions (pp. 3–22). Mexico City: CEMEX.

    Google Scholar 

  • Murray, J. T., Fitzpatrick, U., Brown, M. J. F., & Paxton, R. (2008). Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conservation Genetics Resources, 9(3), 653–666.

    Article  CAS  Google Scholar 

  • Myers, N., Mittermeier, A. R., Mittermeier, C., da Fonseca, F. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326.

    Article  Google Scholar 

  • Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535–538.

    Article  Google Scholar 

  • Packer, L., Ali, E., Dumesh, S., & Walker, K. (2016). The identification of pollinators: where are we and where should we go? In B. Gemmil-Herren (Ed.), Pollination services to agriculture. Sustaining and enhancing a key ecosystem service (pp. 57–73). New York: The Food and Agriculture Organization of the United Nations Routledge.

    Google Scholar 

  • Padoch, C., & Pinedo-Vasquez, M. (2010). Saving slash-and-burn to save biodiversity. Biotropica, 42(5), 550–552.

    Article  Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289–290.

    Article  CAS  PubMed  Google Scholar 

  • Paxton, R., Arevalo, E., & Field, J. (2003). Microsatellite loci for the eusocial Lasioglossum malachurum and other sweat bees (Hymenoptera, Halictidae). Molecular Ecology Notes, 3(1), 82–84.

    Article  CAS  Google Scholar 

  • Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimm, S. L., & Raven, P. (2000). Biodiversity: extinction by numbers. Nature, 403, 843–845.

    Article  CAS  PubMed  Google Scholar 

  • Pons, J., Barraclough, T., Gomez-Zurita, J., Cardoso, A., Duran, D., Hazell, S., Kamoun, S., Sumlin, W. D., & Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55(4), 595–609.

    Article  PubMed  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2011). ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21(8), 1864–1877.

    Article  PubMed  Google Scholar 

  • R Development Core Team. (2015). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Rambaut, A. (2014). FigTree v.1.4.2. http://tree.bio.ed.ac.uk/software/figtree/. Accessed Nov 2015.

  • Ramírez-Delgado, J. P., Christman, Z., & Schmooka, B. (2015). Deforestation and fragmentation of seasonal tropical forests in the southern Yucatán, Mexico (1990–2006). Geocarto International, 29(8), 822–841.

    Article  Google Scholar 

  • Ratnasingham, S., & Hebert, P. D. (2007). BOLD: the barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes, 7(3), 355–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnasingham, S., & Hebert, P. D. (2013). A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE, 8(8), e66213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248–249.

    Article  Google Scholar 

  • Reid, N. M., & Carstens, B. C. (2012). Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology, 12(196), 11.

    Google Scholar 

  • Ricketts, T. H., Dinerstein, E., Boucher, T., Brooks, T. M., Butchart, S. H., Hoffmann, M., et al. (2005). Pinpointing and preventing imminent extinctions. Proceedings of the National Academy of Science, 102(51), 18497–18501.

    Article  CAS  Google Scholar 

  • Ricklefs, R., & Travis, J. (1980). Morphological approach to the study of avian community organization. The Auk, 97(2), 321–338.

    Google Scholar 

  • Rozas, J., Sánchez-DelBarrio, C., Messeguer, X., & Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19(18), 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  • Shokralla, S., Gibson, J. F., Nikbakht, H., & Janzen, D. (2014). Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Molecular Ecology Resources, 14(5), 892–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soro, A., & Paxton, R. (2009). Characterization of 14 polymorphic microsatellite loci for the facultatively eusocial sweat bee Halictus rubicundus (Hymenoptera, Halictidae) and their variability in related species. Molecular Ecology Resources, 9(1), 150–152.

    Article  CAS  PubMed  Google Scholar 

  • Souza, R., Del Lama, M., Cervini, M., Mortari, N., Eltz, T., Zimmermann, Y., Bach, C., Brosi, B. J., Suni, S., Quezada-Euán, J. J., & Paxton, R. J. (2009). Conservation genetics of neotropical pollinators revisited: microsatellite analysis suggests that diploid males are rare in orchid bees. Evolution, 64(11), 3318–3326.

    Article  Google Scholar 

  • Stamatakis, A. (2014). RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 21(30), 9.

    Google Scholar 

  • Taki, H., Okochi, I., Okabe, K., Inoue, T., Goto, H., Matsumura, T., et al. (2013). Succession influences wild bees in a temperate forest landscape: the value of early successional stages in naturally regenerated and planted forest. PLoS ONE, 8(2), E56678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinglei, J., Feng, J., Sun, K., & Wang, J. (2008). Coexistence of two sympatric and morphologically similar bat species Rhinolophys affinis and Rhinolophus pearsoni. Progress in Natural Science, 18(2008), 523–532.

    Google Scholar 

  • Vanbergen, A., Baude, M., Biesmeijer, J. C., Britton, N. F., Brown, M. J., Brown, M., et al. (2013). Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251–259.

    Article  Google Scholar 

  • Veech, J.A., Peres-Neto, P., (2013) A probabilistic model for analysing species co-occurrence. Global Ecology and Biogeography 22 (2),252–260

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (Fourthth ed.). New York: Springer.

    Book  Google Scholar 

  • Wade, E., Hertach, T., Gogala, M., Trilar, T., & Simon, C. (2015). Molecular species delimitation methods recover most song-delimited cicada species in the European Cicadetta montana complex. Journal of Evolutionary Biology, 28(12), 2318–2336.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, P., Metzger, D., & Higuchi, R. (1991). Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10(4), 506–513.

    CAS  PubMed  Google Scholar 

  • Whitlock, R. (2014). Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis. Journal of Ecology, 102(4), 857–872.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wickham, H. (2009). ggplot2: elegant graphics for data analysis. New York: Springer.

    Book  Google Scholar 

  • Williams, P. H., Brown, M. J. F., Carolan, J. C., An, J., Goulson, D., Aytekin, M., Best, L. R., Byvaltsev, A. M., Cederberg, B., Dawson, R., Huang, J., et al. (2012). Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Systematic and Biodiversity, 10(1), 21–56.

    Article  Google Scholar 

  • Wyman, M., Gomez Villegas, Z., & Miranda Ojeda, I. (2007). Land-use/land-cover change in Yucatán State, Mexico: an examination of political, socioeconomic, and biophysical drivers in Peten and Tzucacab. Ethnobotany Research and Applications, 5, 59–66.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the CONACYT-EU project FONCICYT 94293 (Mutualismos y abejas en paisajes tropicales) and SEP-CONACyT 103341 (Conservación de las abejas sin aguijón de México) for financial support. We thank Julie Osgood for her help with microsatellite genotyping and Ricardo Ayala, Remy Vandame, Philippe Sagot and Jason Gibbs for comments, bibliography and insights to define the best characters for morphological analyses. Panagiotis Theodorou provided statistical help. Finally, we would like to thank the Deutsche Akademische Austauschdienst (DAAD) for grants provided to P.L.G. and Julie Osgood.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Landaverde-González.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1015 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landaverde-González, P., Moo-Valle, H., Murray, T.E. et al. Sympatric lineage divergence in cryptic Neotropical sweat bees (Hymenoptera: Halictidae: Lasioglossum). Org Divers Evol 17, 251–265 (2017). https://doi.org/10.1007/s13127-016-0307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-016-0307-1

Keywords

Navigation