Skip to main content

Advertisement

Log in

Founder Effects of Spinocerebellar Ataxias in the American Continents and the Caribbean

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxias (SCAs) comprise a heterogeneous group of autosomal dominant disorders. The relative frequency of the different SCA subtypes varies broadly among different geographical and ethnic groups as result of genetic drifts. This review aims to provide an update regarding SCA founders in the American continents and the Caribbean as well as to discuss characteristics of these populations. Clusters of SCAs were detected in Eastern regions of Cuba for SCA2, in South Brazil for SCA3/MJD, and in Southeast regions of Mexico for SCA7. Prevalence rates were obtained and reached 154 (municipality of Báguano, Cuba), 166 (General Câmara, Brazil), and 423 (Tlaltetela, Mexico) patients/100,000 for SCA2, SCA3/MJD, and SCA7, respectively. In contrast, the scattered families with spinocerebellar ataxia type 10 (SCA10) reported all over North and South Americas have been associated to a common Native American ancestry that may have risen in East Asia and migrated to Americas 10,000 to 20,000 years ago. The comprehensive review showed that for each of these SCAs corresponded at least the development of one study group with a large production of scientific evidence often generalizable to all carriers of these conditions. Clusters of SCA populations in the American continents and the Caribbean provide unusual opportunity to gain insights into clinical and genetic characteristics of these disorders. Furthermore, the presence of large populations of patients living close to study centers can favor the development of meaningful clinical trials, which will impact on therapies and on quality of life of SCA carriers worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bittles AH. Consanguinity, genetic drift, and genetic diseases in populations with reduced numbers of founders. In: Speicher M, Antonarakis SE, Motulsky AG. (Eds.). Vogel and Motulsky's human genetics. Problems and Approaches. Springer-Verlag Berlin Heidelberg, 2010, p. 507.

  2. Reich D, Patterson N, Campbell D, Tandon A, Mazieres S, Ray N, et al. Reconstructing native American population history. Nature. 2012;488(7411):370–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Silva WA, Bonatto SL, Holanda AJ, Ribeiro-Dos-Santos AK, Paixao BM, et al. Mitochondrial genome diversity of Native Americans supports a single early entry of founder populations into America. Am J Hum Genet. 2002;71:187–92.

    Article  CAS  PubMed  Google Scholar 

  4. Moreno-Mayar JV, Vinner L, de Barros Damgaard P, de la Fuente C, Chan J, et al. Early human dispersals within the Americas. Science. 2018;362(6419):eaav2621.

    Article  PubMed  CAS  Google Scholar 

  5. Forsythe DP. Encyclopedia of Human Rights, Volume 4. Oxford University Press. 2009; p. 297. ISBN 978–0–19-533402-9.

  6. Segal R. The black diaspora: five centuries of the black experience outside Africa. New York: Farrar, Straus and Giroux; 1985.

    Google Scholar 

  7. Eltis D. Economic growth and the ending of the transatlantic slave trade: Oxford University Press; 1987.

  8. Velázquez-Pérez L, Cruz GS, Santos Falcon N, Enrique Almaguer Mederos L, Escalona Batallan K, Rodríguez Labrada R, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett. 2009;454(2):157–60.

    Article  PubMed  CAS  Google Scholar 

  9. Velázquez-Pérez LC, Rodríguez-Labrada R, Fernandez-Ruiz J. Spinocerebellar Ataxia type 2: clinicogenetic aspects, mechanistic insights, and management approaches. Front Neurol. 2017;8:472.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jardim LB, Silveira I, Pereira ML, Ferro A, Alonso I, Do Céu Moreira M, et al. A survey of spinocerebellar ataxia in South Brazil - 66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease-causing mutations. J Neurol. 2001;248(10):870–6.

    Article  CAS  PubMed  Google Scholar 

  11. Souza GN, Kersting N, Krum-Santos AC, Santos AS, Furtado GV, Pacheco D, et al. Spinocerebellar ataxia type 3/Machado-Joseph disease: segregation patterns and factors influencing instability of expanded CAG transmissions. Clin Genet. 2016;90(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  12. Magaña JJ, Gómez R, Maldonado-Rodríguez M, Velázquez-Pérez L, Tapia-Guerrero YS, Cortés H, et al. Origin of the spinocerebellar ataxia type 7 gene mutation in Mexican population. Cerebellum. 2013;12(6):902–5.

    Article  PubMed  CAS  Google Scholar 

  13. Magaña JJ, Tapia-Guerrero YS, Velázquez-Pérez L, Cerecedo-Zapata CM, Maldonado-Rodríguez M, Jano-Ito JS, et al. Analysis of CAG repeats in five SCA loci in Mexican population: epidemiological evidence of a SCA7 founder effect. Clin Genet. 2014;85(2):159–65.

    Article  PubMed  CAS  Google Scholar 

  14. Almeida T, Alonso I, Martins S, Ramos EM, Azevedo L, Ohno K, et al. Ancestral origin of the ATTCT repeat expansion in spinocerebellar ataxia type 10 (SCA10). PLoS One. 2009;4(2):e4553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bushara K, Bower M, Liu J, McFarland KN, Landrian I, Hutter D, et al. Expansion of the Spinocerebellar ataxia type 10 (SCA10) repeat in a patient with Sioux Native American ancestry. PLoS One. 2013;8(11):e81342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sequeiros J, Martins S, Silveira I. Epidemiology and population genetics of degenerative ataxias. Handb Clin Neurol. 2012;103:227–51.

    Article  PubMed  Google Scholar 

  17. Pulst MS, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14:269–76.

    Article  CAS  PubMed  Google Scholar 

  18. Ross O, Rutherford N, Baker M, Soto-Ortolaza AI, Carrasquillo MM, DeJesus-Hernandez M, et al. Ataxin-2 repeat-length variation and neurodegeneration. Hum Mol Genet. 2011;20:3207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sequeiros J, Seneca S, Martindale J. Consensus and controversies in best practices for molecular genetic testing of spinocerebellar ataxias. Eur J Hum Genet. 2010;18(11):1188–95.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, Medrano-Montero J, Sanchez-Cruz G, Aguilera-Rodriguez R, et al. Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study. Lancet Neurol. 2014;13(5):482–9.

    Article  PubMed  CAS  Google Scholar 

  21. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94.

    Article  CAS  PubMed  Google Scholar 

  22. Auburger G, Diaz GO, Capote RF, Sanchez SG, Pérez MP, del Cueto ME, et al. Autosomal dominant ataxia: genetic evidence for locus heterogeneity from a Cuban founder-effect population. Am J Hum Genet. 1990;46(6):1163–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. González-Zaldívar Y, Vázquez-Mojena Y, Laffita-Mesa JM, Almaguer-Mederos LE, Rodríguez-Labrada R, Sánchez-Cruz G, et al. Epidemiological, clinical, and molecular characterization of Cuban families with spinocerebellar ataxia type 3/Machado-Joseph disease. Cerebellum Ataxias. 2015;2:1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Alonso E, Martínez-Ruano L, De Biase I, Mader C, Ochoa A, Yescas P, et al. Distinct distribution of autosomal dominant spinocerebellar ataxia in the Mexican population. Mov Disord. 2007;22(7):1050–3.

    Article  PubMed  Google Scholar 

  25. Bryer A, Krause A, Bill P, Davids V, Bryant D, Butler J, et al. The hereditary adult-onset ataxias in South Africa. J Neurol Sci. 2003;216:47–54.

    Article  PubMed  Google Scholar 

  26. Faruq M, Scaria V, Singh I, Tyagi S, Srivastava AK, Mukerji M. SCA-LSVD: a repeat-oriented locus-specific variation database for genotype to phenotype correlations in spinocerebellar ataxias. Hum Mutat. 2009;30:1037–42.

    Article  CAS  PubMed  Google Scholar 

  27. Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, et al. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol. 2004;61:727–33.

    Article  PubMed  Google Scholar 

  28. Paradisi I, Ikonomu V, Arias S. Spinocerebellar ataxias in Venezuela: genetic epidemiology and their most likely ethnic descent. J Hum Genet. 2016;61(3):215–22.

    Article  CAS  PubMed  Google Scholar 

  29. Vallés L, Estrada GL, Bastecherrea SL. Algunas formas de heredoataxia en una región de Cuba. Rev Neurol (Cubana). 1978;27:163–76.

    Google Scholar 

  30. Hernandez A, Magarino C, Gispert S, Santos N, Lunkes A, Orozco G, et al. Genetic mapping of the spinocerebellar ataxia 2 (SCA2) locus on chromosome 12q23-q24.1. Genomics. 1995;25:433–5.

    Article  CAS  PubMed  Google Scholar 

  31. Allotey R, Twells R, Cemal C, Norte BS, Weissenbach J, Pook M, et al. The spinocerebellar ataxia 2 locus is located within a 3-cM interval on chromosome 12q23–24.1. Am J Hum Genet. 1995;57:185–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Laffita-Mesa J. Genetics and molecular investigations on SCA2: from genetic predisposition to genetic and epigenetic modifying mechanisms acting in a very frequent disease in Holguín. In: Velazquez-Pérez L, editor. III International Symposium of Hereditary Ataxias. Cuba: Holguín; 2008.

    Google Scholar 

  33. Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G, et al. Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J Hum Genet. 1998;63:1060–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laffita-Mesa JM, Velázquez-Pérez LC, Santos Falcón N, Cruz-Mariño T, González Zaldívar Y, Vázquez Mojena Y, et al. Unexpanded and intermediate CAG polymorphisms at the SCA2 locus (ATXN2) in the Cuban population: evidence about the origin of expanded SCA2 alleles. Eur J Hum Genet. 2012;20(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  35. Pulst S, Santos N, Wang D, Yang H, Huynh D, Velázquez L, et al. Spinocerebellar ataxia type 2: polyQ repeat variation in the CACNA1A calcium channel modifies age of onset. Brain. 2005;128(Pt 10):2297–303.

    Article  PubMed  Google Scholar 

  36. Tezenas du Montcel S, Durr A, Bauer P, Figueroa KP, Ichikawa Y, Brussino A, et al. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain. 2014;137:2444–55.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pereira FS, Monte TL, Locks-Coelho LD, Silva AS, Barsottini O, Pedroso JL, et al. ATXN3, ATXN7, CACNA1A, and RAI1 genes and mitochondrial polymorphism A10398G did not modify age at onset in spinocerebellar Ataxia type 2 patients from South America. Cerebellum. 2015;14(6):728–30.

    Article  PubMed  Google Scholar 

  38. Jacobi H, Reetz K, du Montcel ST, Bauer P, Mariotti C, Nanetti L, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol. 2013;12(7):650–8.

    Article  PubMed  Google Scholar 

  39. Saute AM, Jardim LB. Machado–Joseph disease: clinical and genetic aspects, and current treatment. Expert, Opin, Orphan. 2015;3:517–35.

    Article  Google Scholar 

  40. Jardim LB, Pereira ML, Silveira I, Ferro A, Sequeiros J, Giugliani R. Machado–Joseph disease in South Brazil: clinical and molecular characterization of kindreds. Acta Neurol Scand. 2001;104:224–31.

    Article  CAS  PubMed  Google Scholar 

  41. Jardim LB, Pereira ML, Silveira I, Ferro A, Sequeiros J, Giugliani R. Neurologic findings in Machado-Joseph disease: relation with disease duration, subtypes, and (CAG)n. Arch Neurol. 2001;58(6):899–904.

    Article  CAS  PubMed  Google Scholar 

  42. Kieling C, Prestes PR, Saraiva-Pereira ML, Jardim LB. Survival estimates for patients with Machado-Joseph disease (SCA3). Clin Genet. 2007;72(6):543–5.

    Article  CAS  PubMed  Google Scholar 

  43. Jardim LB, Hauser L, Kieling C, Saute JA, Xavier R, Rieder CR, et al. Progression rate of neurological deficits in a 10-year cohort of SCA3 patients. Cerebellum. 2007;9(3):419–28.

    Article  Google Scholar 

  44. Donis KC, Saute JA, Krum-Santos AC, Furtado GV, Mattos EP, Saraiva-Pereira ML, et al. Spinocerebellar ataxia type 3/Machado-Joseph disease starting before adolescence. Neurogenetics. 2016;17(2):107–13.

    Article  PubMed  Google Scholar 

  45. Jardim L, Silveira I, Pereira ML, Do Céu Moreira M, Mendonça P, Sequeiros J, et al. Searching for modulating effects of SCA2, SCA6 and DRPLA CAG tracts on the Machado-Joseph disease (SCA3) phenotype. Acta Neurol Scand. 2003;107(3):211–4.

    Article  CAS  PubMed  Google Scholar 

  46. Emmel VE, Alonso I, Jardim LB, Saraiva-Pereira ML, Sequeiros J. Does DNA methylation in the promoter region of the ATXN3 gene modify age at onset in MJD (SCA3) patients? Clin Genet. 2011;79(1):100–2.

    Article  CAS  PubMed  Google Scholar 

  47. Siebert M, Donis KC, Socal M, Rieder CR, Emmel VE, Vairo F, et al. Glucocerebrosidase gene variants in parkinsonian patients with Machado Joseph/spinocerebellar ataxia 3. Parkinsonism Relat Disord. 2012;18(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  48. de Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O, et al. Spinocerebellar ataxias in Brazil--frequencies and modulating effects of related genes. Cerebellum. 2014;13(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  49. Tort AB, Portela LV, Rockenbach IC, Monte TL, Pereira ML, Souza DO, et al. S100B and NSE serum concentrations in Machado Joseph disease. Clin Chim Acta. 2005;351(1–2):143–8.

    Article  CAS  PubMed  Google Scholar 

  50. da Silva Carvalho G, Saute JA, Haas CB, Torrez VR, Brochier AW, Souza GN, et al. Cytokines in Machado Joseph disease/spinocerebellar ataxia 3. Cerebellum. 2016;15(4):518–25.

    Article  PubMed  CAS  Google Scholar 

  51. de Assis AM, Saute JAM, Longoni A, Haas CB, Torrez VR, Brochier AW, et al. Peripheral oxidative stress biomarkers in spinocerebellar ataxia type 3/Machado-Joseph disease. Front Neurol. 2017;8:485.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Saute JA, de Castilhos RM, Monte TL, Schumacher-Schuh AF, Donis KC, D'Ávila R, et al. A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease. Mov Disord. 2014;29(4):568–73.

    Article  CAS  PubMed  Google Scholar 

  53. Saute JA, Rieder CR, Castilhos RM, Monte TL, Schumacher-Schuh AF, Donis KC, et al. Planning future clinical trials in Machado Joseph disease: lessons from a phase 2 trial. J Neurol Sci. 2015;358(1–2):72–6.

    Article  PubMed  Google Scholar 

  54. Saute JAM, Jardim LB. Planning future clinical trials for Machado-Joseph disease. Adv Exp Med Biol. 2018;1049:321–48.

    Article  CAS  PubMed  Google Scholar 

  55. Prestes PR, Saraiva-Pereira ML, Silveira I, Sequeiros J, Jardim LB. Machado-Joseph disease enhances genetic fitness: a comparison between affected and unaffected women and between MJD and the general population. Ann Hum Genet. 2008;72(Pt 1):57–64.

    CAS  PubMed  Google Scholar 

  56. Souza GN, Kersting N, Gonçalves TA, Pacheco DLO, Saraiva-Pereira ML, Camey SA, et al. Cancer in Machado-Joseph disease patients-low frequency as a cause of death. Cancer Gene Ther. 2017;212–213:19–23.

    Article  Google Scholar 

  57. Piazza WF. A epope ́ia ac ̧o ́rico-madeirense 1748–1756. Florianopolis: Editora da UFSC, 1992.

  58. Gaspar C, Lopes-Cendes I, Hayes S, Goto J, Arvidsson K, Dias A, et al. Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study. Am J Hum Genet. 2001;68(2):523–8.

    Article  CAS  PubMed  Google Scholar 

  59. Martins S, Calafell F, Gaspar C, Wong VC, Silveira I, Nicholson GA, et al. Asian origin for the worldwide-spread mutational event in Machado-Joseph disease. Arch Neurol. 2007;64(10):1502–8.

    Article  PubMed  Google Scholar 

  60. Li T, Martins S, Peng Y, Wang P, Hou X, Chen Z, et al. Is the high frequency of Machado-Joseph disease in China due to new mutational origins? Front Genet. 2019;9:740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. de Mattos EP, Leotti VB, Soong BW, Raposo M, Lima M, Vasconcelos J, et al. Age at onset prediction in spinocerebellar ataxia type 3 changes according to population of origin. Eur J Neurol. 2019;26(1):113–20.

    Article  PubMed  Google Scholar 

  62. de Mattos EP, Kolbe Musskopf M, Bielefeldt Leotti V, Saraiva-Pereira ML, Jardim LB. Genetic risk factors for modulation of age at onset in Machado-Joseph disease/spinocerebellar ataxia type 3: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2019;90(2):203–10.

    Article  PubMed  Google Scholar 

  63. David G, Durr A, Stevanin G, Cancel G, Abbas N, Benomar A, et al. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet. 1998;7:165–70.

    Article  CAS  PubMed  Google Scholar 

  64. Michalik A, Martin JJ, Van Broeckhoven C. Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet. 2004;12(1):2–15.

    Article  CAS  PubMed  Google Scholar 

  65. Velázquez-Pérez L, Cerecedo-Zapata CM, Hernandez-Hernandez O, Martinez-Cruz E, Tapia-Guerrero YS, Gonzalez-Pina R, et al. A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7. Neurogenetics. 2015;16(1):11–21.

    Article  PubMed  CAS  Google Scholar 

  66. Garden GA, La Spada AR. Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum. 2008;7(2):138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Froment J, Bonnet P, Colrat A. Heredo-degenerations retinienne et spino-cerebelleuse: variantes ophtalmoscopiques et neurologiques presentees par trois generations successives. J Med Lyon. 1937;1937:153–63.

    Google Scholar 

  68. Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol. 1993;61:1–14.

    CAS  PubMed  Google Scholar 

  69. Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, et al. Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature. 1995;378:403–6.

    Article  CAS  PubMed  Google Scholar 

  70. Benomar A, Krols L, Stevanin G, Cancel G, Le Guern E, David G, et al. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12–p21.1. Nat Genet. 1995;10:84–8.

    Article  CAS  PubMed  Google Scholar 

  71. Gouw LG, Kaplan CD, Haines JH, Digre KB, Rutledge SL, Matilla A, et al. Retinal degeneration characterizes a spinocerebellar ataxia mapping to 147chromosome 3p. Nat Genet. 1995;10:89–93.

    Article  CAS  PubMed  Google Scholar 

  72. Holmberg M, Johansson J, Forsgren L, Heijbel J, Sandgren O, Holmgren G. Localization of autosomal dominant cerebellar ataxia associated with retinal degeneration and anticipation to chromosome 3p12–p21.1. Hum Mol Genet. 1995;4:1441–5.

    Article  CAS  PubMed  Google Scholar 

  73. David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997;17:65–70.

    Article  CAS  PubMed  Google Scholar 

  74. Karam A, Trottier Y. Molecular mechanisms and therapeutic strategies in spinocerebellar ataxia type 7. Adv Exp Med Biol. 2018;1049:197–218.

    Article  CAS  PubMed  Google Scholar 

  75. Moseley ML, Benzow KA, Shut LJ, Bird TD, Gomez CM, Barkhaus PE, et al. Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 families. Neurology. 1998;51(6):1666–71.

    Article  CAS  PubMed  Google Scholar 

  76. Storey E, du Sart D, Shaw JH, Lorentzos P, Kelly L, McKinley Gardner RJ. Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet. 2000;95:351–7.

    Article  CAS  PubMed  Google Scholar 

  77. Stevanin G, David G, Durr A, Giunti P, Benomar A, Abada-Bendib M, et al. Multiple origins of the spinocerebellar ataxia7 (SCA7) mutation revealed by linkage disequilibrium studies with closely flanking markers, including an intragenic polymorphism (G3145TG/A3145TG). Eur J Hum Genet. 1999;7:889–96.

    Article  CAS  PubMed  Google Scholar 

  78. Atadzhanov M, Smith DC, Mwaba MH, Siddiqi OK, Bryer A, Greenberg LJ. Clinical and genetic analysis of spinocerebellar ataxia type 7 (SCA7) in Zambian families. Cerebellum Ataxias. 2017;4:17.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Azevedo PB, Rocha AG, Keim LMN, Lavinsky D, Furtado GV, De Mattos EP, et al. Ophthalmological and neurologic manifestations in pre-clinical and clinical phases of spinocerebellar ataxia type 7. Cerebellum. 2019;18(3):388–96.

    Article  CAS  PubMed  Google Scholar 

  80. Watson L, Smith DC, Scholefield J, Ballo R, Kidson S, Greenberg LJ, et al. Spinocerebellar ataxia type 7 in South Africa: epidemiology, pathogenesis and therapy. S Afr Med J. 2016;106:S107–9.

    Article  CAS  PubMed  Google Scholar 

  81. Kim JY, Park SS, Joo SI, Kim JM, Jeon BS. Molecular analysis of spinocerebellar ataxias in Koreans: frequencies and reference ranges of SCA1, SCA2, SCA3, SCA6 and SCA7. Mol Cell. 2001;12(3):336–41.

    CAS  Google Scholar 

  82. Jonasson J, Juvonen V, Sistonen P, Ignatius J, Johansson D, Bjorck EJ. Evidence for a common spinocerebellar ataxia type 7 (SCA7) founder mutation in Scandinavia. Eur J Hum Genet. 2000;8:918–22.

    Article  CAS  PubMed  Google Scholar 

  83. Smith DC, Atadzhanov M, Mwaba M, Greenberj LJ. Evidence of common founder effect amongst South Africa and Zambian individuals with spinocerebellar ataxia type 7. J Neurol Sci. 2015;354(1–2):75–8.

    Article  PubMed  Google Scholar 

  84. Demard JC. Émigration française au Mexique: 1, Les communautÉs agricoles (1828–1900). 1st edn. Dominique GuÉniot, Éditeur. Langres; 1995. p. 91.

  85. Magaña JJ, Tapia-Guerrero YS, Velázquez-Pérez L, Cruz-Mariño T, Cerecedo-Zapata CM, Gómez R, et al. Clinical and molecular effect on offspring of a marriage of consanguineous spinocerebellar ataxia type 7 mutation carriers: a family case report. Int J Clin Exp Med. 2014;7(12):5896–903.

    PubMed  PubMed Central  Google Scholar 

  86. Hernández-Castillo CR, Alcauter S, Galvez V, Barrios FA, Barrios FA, Yescas P, et al. Disruption of visual and motor connectivity in spinocerebellar ataxia type 7. Mov Disord. 2013;28(12):1708–16.

    Article  PubMed  CAS  Google Scholar 

  87. Gomez-Coello A, Valadez-Jimenez VM, Cisneros B, Carrillo-Mora P, Parra-Cardenas M, Hernandez-Hernandez O, et al. Voice alterations in patients with spinocerebellar ataxia type 7 (SCA7): clinical-genetic correlations. J Voice. 2017;31(1):123:e1–5.

    Article  Google Scholar 

  88. Hernandez-Castillo CR, Vaca-Palomares I, Barrios F, Martinez L, Boll MC, Fernandez-Ruiz J. Ataxia severity correlates with White matter degeneration in spinocerebellar ataxia type 7. AJNR Am J Neuroradiol. 2016;37(11):2050–4.

    Article  CAS  PubMed  Google Scholar 

  89. Hernandez-Castillo CR, Galvez V, Diaz R, Fernandez-Ruiz J. Specific cerebellar and cortical degeneration correlates with ataxia severity in spinocerebellar ataxia type 7. Brain Imaging Behav. 2016;10(1):252–7.

    Article  PubMed  Google Scholar 

  90. Chirino A, Hernandez-Castillo CR, Galvez V, Contreras A, Diaz R, Beltran-Parrazal L, et al. Motor and cognitive impairments in spinocerebellar ataxia type 7 and its correlations with cortical volumes. Eur J Neurosci. 2018;48(10):3199–211.

    Article  PubMed  Google Scholar 

  91. Hernandez-Castillo CR, King M, Diedrichsen J, Fernandez-Ruiz J. Unique degeneration signatures in the cerebellar cortex for spinocerebellar ataxias 2, 3, and 7. NeuroImage Clin. 2018;20:931–8.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Torres-Ramos Y, Montoya-Estrada A, Cisneros B, Tercero-Pérez K, León-Reyes G, Leyva-García N, et al. Oxidative stress in spinocerebellar ataxia type 7 is associated with disease severity. Cerebellum. 2018;17(5):601–9.

    Article  CAS  PubMed  Google Scholar 

  93. Borgonio-Cuadra VM, Valdes-Vargas C, Romero-Córdoba S, Hiodalgo-Miranda A, Tapia-Guerrero Y, Cerecedo-Zapata CM, et al. Wide profiling of circulating MicroRNAs in spinocerebellar ataxia type 7. Mol Neurobiol. 2019;56(9):6106–20.

    Article  CAS  PubMed  Google Scholar 

  94. Tercero-Pérez K, Cortés H, Torres-Ramos Y, Rodríguez-Labrada R, Cerecedo-Zapata CM, Hernández-Hernández O, et al. Effects of physical rehabilitation in patients with spinocerebellar ataxia type 7. Cerebellum. 2019;18(3):397–405.

    Article  PubMed  Google Scholar 

  95. Escalona-Rayo O, Fuentes-Vázquez P, Leyva-Gómez G, Cisneros B, Villalobos R, Magaña JJ, et al. Nanoparticulate strategies for the treatment of polyglutamine diseases by halting the protein aggregation process. Drug Dev Ind Pharm. 2017;43(6):871–88.

    Article  CAS  PubMed  Google Scholar 

  96. Matsuura T, Achari M, Khajavi M, Bachinski LL, Zoghbi HY, Ashizawa T. Mapping of the gene for a novel spinocerebellar ataxia with pure cerebellar signs and epilepsy. Ann Neurol. 1999;45(3):407–11.

    Article  CAS  PubMed  Google Scholar 

  97. Zu L, Figueroa KP, Grewal R, Pulst SM. Mapping of a new autosomal dominant spinocerebellar ataxia to chromosome 22. Am J Hum Genet. 1999;64(2):594–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol. 2001;50(2):234–9.

    Article  CAS  PubMed  Google Scholar 

  99. Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet. 2000;26(2):191–4.

    Article  CAS  PubMed  Google Scholar 

  100. Matsuura T, Fang P, Pearson CE, Jayakar P, Ashizawa T, Roa BB, et al. Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: repeat purity as a disease modifier? Am J Hum Genet. 2006;78(1):125–9.

    Article  CAS  PubMed  Google Scholar 

  101. Wakamiya M, Matsuura T, Liu Y, Schuster GC, Gao R, Xu W. The role of ataxin 10 in the pathogenesis of spinocerebellar ataxia type 10. Neurology. 2006;67(4):607–13.

    Article  CAS  PubMed  Google Scholar 

  102. White M, Xia G, Gao R, Wakamiya M, Sarkar PS, McFarland K, et al. Transgenic mice with SCA10 pentanucleotide repeats show motor phenotype and susceptibility to seizure: a toxic RNA gain-of-function model. J Neurosci Res. 2012;90(3):706–14.

    Article  CAS  PubMed  Google Scholar 

  103. Teive HA, Roa BB, Raskin S, Fang P, Arruda WO, Neto YC. Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology. 2004;63(8):1509–12.

    Article  CAS  PubMed  Google Scholar 

  104. Teive HA, Moro A, Moscovich M, Arruda WO, Munhoz RP, Raskin S, et al. Spinocerebellar ataxia type 10 in the south of Brazil: the Amerindian-Belgian connection. Arq Neuropsiquiatr. 2015;73(8):725–7.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Leonardi L, Marcotulli C, McFarland KN, Tessa A, DiFabio R, Santorelli FM, et al. Spinocerebellar ataxia type 10 in Peru: the missing link in the Amerindian origin of the disease. J Neurol. 2014;261(9):1691–4.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bampi GB, Bisso-Machado R, Hünemeier T, Gheno TC, Furtado GV, Veliz-Otani D, et al. Haplotype study in SCA10 families provides further evidence for a common ancestral origin of the mutation. NeuroMolecular Med. 2017;19(4):501–9.

    Article  CAS  PubMed  Google Scholar 

  107. Baizabal-Carvallo JF, Xia G, Botros P, Laguna J, Ashizawa T, Jankovic J. Bolivian kindred with combined spinocerebellar ataxia types 2 and 10. Acta Neurol Scand. 2015;132(2):139–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gatto EM, Gao R, White MC, Uribe Roca MC, Etcheverry JL, Persi G, et al. Ethnic origin and extrapyramidal signs in an Argentinean spinocerebellar ataxia type 10 family. Neurology. 2007;69(2):216–8.

    Article  CAS  PubMed  Google Scholar 

  109. Trikamji B, Singh P, Mishra S. Spinocerebellar ataxia-10 with paranoid schizophrenia. Ann Indian Acad Neurol. 2015;18(1):93–5.

    PubMed  PubMed Central  Google Scholar 

  110. Posth C, Nakatsuka N, Lazaridis I, Skoglund P, Mallick S, Lamnidis TC, et al. Reconstructing the deep population history of Central and South America. Cell. 2018;175(5):1185–1197.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guio H, Poterico JA, Levano KS, Cornejo-Olivas M, Mazzetti P, Manassero-Morales G, et al. Genetics and genomics in Peru: clinical and research perspective. Mol Genet Genomic Med. 2018;6(6):873–86.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cintra VP, Lourenço CM, Marques SE, de Oliveira LM, Tumas V, Marques W Jr. Mutational screening of 320 Brazilian patients with autosomal dominant spinocerebellar ataxia. J Neurol Sci. 2014;347(1–2):375–9.

    Article  PubMed  Google Scholar 

  113. McFarland KN, Liu J, Landrian I, Zeng D, Raskin S, Moscovich M, et al. Repeat interruptions in spinocerebellar ataxia type 10 expansions are strongly associated with epileptic seizures. Neurogenetics. 2014;15(1):59–64.

    Article  PubMed  Google Scholar 

  114. Wang J, Shen L, Lei L, Xu Q, Zhou J, Liu Y, et al. Spinocerebellar ataxias in mainland China: an updated genetic analysis among a large cohort of familial and sporadic cases. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36(6):482–9.

    PubMed  Google Scholar 

  115. Jiang H, Tang BS, Xu B, Zhao GH, Shen L, Tang JG, et al. Frequency analysis of autosomal dominant spinocerebellar ataxias in mainland Chinese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Chin Med J. 2005;118(10):837–43.

    CAS  PubMed  Google Scholar 

  116. Wang K, McFarland KN, Liu J, Zeng D, Landrian I, Xia G, et al. Spinocerebellar ataxia type 10 in Chinese Han. Neurol Genet. 2015;1(3):e26.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Naito H, Takahashi T, Kamada M, Morino H, Yoshino H, Hattori N, et al. First report of a Japanese family with spinocerebellar ataxia type 10: the second report from Asia after a report from China. PLoS One. 2017;12(5):e0177955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Xia G, McFarland KN, Wang K, Sarkar PS, Yachnis AT, Ashizawa T. Purkinje cell loss is the major brain pathology of spinocerebellar ataxia type 10. J Neurol Neurosurg Psychiatry. 2013;84(12):1409–11.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hernandez-Castillo CR, Diaz R, Vaca-Palomares I, Torres DL, Chirino A, Campos-Romo A, et al. Extensive cerebellar and thalamic degeneration in spinocerebellar ataxia type 10. Parkinsonism Relat Disord. 2019. https://doi.org/10.1016/j.parkreldis.2019.08.011inpress.

  120. McFarland KN, Liu J, Landrian I, Godiska R, Shanker S, Yu F, et al. SMRT sequencing of long tandem nucleotide repeats in SCA10 reveals unique insight of repeat expansion structure. PLoS One. 2015;10(8):e0135906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Schüle B, McFarland KN, Lee K, Tsai YC, Nguyen KD, Sun C, et al. Parkinson's disease associated with pure ATXN10 repeat expansion. NPJ Parkinsons Dis. 2017;3:27.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Alonso I, Jardim LB, Artigalas O, Saraiva-Pereira ML, Matsuura T, Ashizawa T, et al. Reduced penetrance of intermediate size alleles in spinocerebellar ataxia type 10. Neurology. 2006;66(10):1602–4.

    Article  CAS  PubMed  Google Scholar 

  123. Raskin S, Ashizawa T, Teive HA, Arruda WO, Fang P, Gao R, et al. Reduced penetrance in a Brazilian family with spinocerebellar ataxia type 10. Arch Neurol. 2007;64(4):591–4.

    Article  PubMed  Google Scholar 

  124. McFarland KN, Liu J, Landrian I, Gao R, Sarkar PS, Raskin S, et al. Paradoxical effects of repeat interruptions on spinocerebellar ataxia type 10 expansions and repeat instability. Eur J Hum Genet. 2013;21(11):1272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Elliot P, Wakefield J. Disease clusters: should they be investigated, and, if so, when and how? J R Statist Soc A. 2001;164(1):3–12.

    Article  Google Scholar 

  126. Zlotogora J. Multiple mutations responsible for frequent genetic diseases in isolated populations. Eur J Hum Genet. 2007;15(3):272–8.

    Article  CAS  PubMed  Google Scholar 

  127. Nicolas G, Veltman JA. The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol. 2019;137:183–207.

    Article  CAS  PubMed  Google Scholar 

  128. Ayhan F, Ikeda Y, Dalton JC, Day JW, Ranum LPW. Spinocerebellar Ataxia Type 8. 2001 Nov 27 [updated 2014 Apr 3]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K,Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2019. Available from http://www.ncbi.nlm.nih.gov/books/NBK1268/. Accessed 18 Jan. 2020

  129. Cardoso GC, de Oliveira MZ, Paixão-Côrtes VR, Castilla EE, Schuler-Faccini L. Clusters of genetic diseases in Brazil. J Community Genet. 2019;10(1):121–8.

    Article  PubMed  Google Scholar 

  130. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983;306(5940):234–8.

    Article  CAS  PubMed  Google Scholar 

  131. Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–83.

    Article  Google Scholar 

  132. Nenguke T, Aladjem MI, Gusella JF, Wexler NS. Arnheim N; Venezuela HD project. Candidate DNA replication initiation regions at human trinucleotide repeat disease loci. Hum Mol Genet. 2003;12(9):1021–8.

    Article  CAS  PubMed  Google Scholar 

  133. Sapp E, Valencia A, Li X, Aronin N, Kegel KB, Vonsattel JP, et al. Native mutant huntingtin in human brain: evidence for prevalence of full-length monomer. J Biol Chem. 2012;287(16):13487–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gayan J, Brocklebank D, Andresen JM. Alkorta-Aranburu G; US-Venezuela collaborative research group, Zameel Cader M, et al. Genomewide linkage scan reveals novel loci modifying age of onset of Huntington’s disease in the Venezuelan HD kindreds. Genet Epidemiol. 2008;32(5):445–53.

    Article  PubMed  Google Scholar 

  135. Sena LS, Castilhos RM, Mattos EP, Furtado GV, Pedroso JL, Barsottini O, et al. Selective forces related to spinocerebellar ataxia type 2. Cerebellum. 2019;18(2):188–94.

    Article  CAS  PubMed  Google Scholar 

  136. Faruq M, Magaña JJ, Suroliya V, Narang A, Murillo-Melo NM, Hernández-Hernández O, et al. A complete association of an intronic SNP rs6798742 with origin of spinocerebellar ataxia type 7-CAG expansion loci in the Indian and Mexican population. Ann Hum Genet. 2017;81(5):197–204.

    Article  CAS  PubMed  Google Scholar 

  137. Ramos EM, Martins S, Alonso I, Emmel VE, Saraiva-Pereira ML, Jardim LB, et al. Common origin of pure and interrupted repeat expansions in spinocerebellar ataxia type 2 (SCA2). Am J Med Genet B Neuropsychiatr Genet. 2010;153B(2):524–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

ACM, MLSP, and LBJ were supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). JJM, JFR, BC, and CMCZ were supported by CONACyT (grant no. 258043). JFR was also supported by CONACYT (grant no. A1-S-10669). LVP, RRL, YVM and JMM were supported by the Cuban Ministry of Public Health.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

LVP and LBJ conceived the study; RRL, LVP, YVM, and JMM contributed to section “SCA2”; ACM, MLSP, and LBJ contributed to section “SCA3/MJD”; JJM, JFR, BC, and CMCZ contributed to section “SCA7”; TA, HT, and KNM contributed to section “SCA10”; LBJ, LVP, and CG contributed to sections “Introduction”; all authors contributed to section “Discussion”; all authors read and approved the submitted version of the manuscript.

Corresponding author

Correspondence to Luis Velázquez-Pérez.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest that could be perceived as prejudicial to the impartiality of the reported research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Labrada, R., Martins, A.C., Magaña, J.J. et al. Founder Effects of Spinocerebellar Ataxias in the American Continents and the Caribbean. Cerebellum 19, 446–458 (2020). https://doi.org/10.1007/s12311-020-01109-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01109-7

Keywords

Navigation