Skip to main content
Log in

Mucilaginibacter ginsenosidivorax sp. nov., with ginsenoside converting activity isolated from sediment

  • Note
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A Gram-reaction-negative, strictly aerobic, non-motile, non-spore-forming, and rod-shaped bacterial strain designated KHI28T was isolated from sediment in Gapcheon (river) and its taxonomic position was investigated using a polyphasic approach. Strain KHI28T grew at 10–42°C and at pH 5.5–8.5 on R2A and nutrient agar without additional NaCl as a supplement. Strain KHI28T possessed β-glucosidase activity, which was responsible for its ability to transform ginsenosides Rb1 and Re (ones of the dominant active components of ginseng) to C-K and Rg2, respectively. On the basis of 16S rRNA gene sequence similarity, strain KHI28T was shown to belong to the family Sphingobacteriaceae and to be related to Mucilaginibacter dorajii DR-f4T (97.9% sequence similarity), M. polysacchareus DRP28T (97.3%), and M. lappiensis ANJLI2T (97.2%). The G+C content of the genomic DNA was 45.8%. The predominant respiratory quinone was MK-7 and the major fatty acids were summed feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c), iso-C15:0 and C16:0. DNA and chemotaxonomic data supported the affiliation of strain KHI28T to the genus Mucilaginibacter. Strain KHI28T could be differentiated genotypically and phenotypically from the recognized species of the genus Mucilaginibacter. The isolate therefore represents a novel species, for which the name Mucilaginibacter ginsenosidivorax sp. nov. is proposed, with the type strain KHI28T (=KACC 14955T =LMG 25804T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, D.S., Cui, C.H., Lee, H.G., Wang, L., Kim, S.C., Lee, S.T., Jin, F., Yu, H., Chin, Y.W., Lee, H.K., Im, W.T., and Kim, S.G. 2010. Identification and characterization of a novel Terrabacter gin-senosidimutans sp. nov. beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76, 5827–5836.

    Article  PubMed  CAS  Google Scholar 

  • Atlas, R.M. 1993. Handbook of Microbiological Media. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Baik, K.S., Park, S.C., Kim, E.M., Lim, C.H., and Seong, C.N. 2010. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int. J. Syst. Evol. Microbiol. 60, 134–139.

    Article  PubMed  CAS  Google Scholar 

  • Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.

    PubMed  CAS  Google Scholar 

  • Cappuccino, J.G. and Sherman, N. 2002. Microbiology: a laboratory manual, 6th ed. Pearson Education, Inc., California, USA.

    Google Scholar 

  • Choi, J.R., Hong, S.W., Kim, Y., Jang, S.E., Kim, N.J., Han, M.J., and Kim, D.H. 2011. Metabolic activities of ginseng and its constituents, ginsenoside Rb1 and Rg1, by human intestinal microflora. J. Ginseng Res. 35, 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.

    Article  PubMed  CAS  Google Scholar 

  • Cui, C.H., Choi, T.E., Yu, H., Jin, F., Lee, S.T., Kim, S.C., and Im, W.T. 2011. Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. J. Microbiol. 49, 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Han, S.I., Lee, H.J., Lee, H.R., Kim, K.K., and Whang, K.S. 2012. Mucilaginibacter polysacchareus sp. nov., an exopolysaccharide-producing bacterial species isolated from the rhizoplane of the herb Angelica sinensis. Int. J. Syst. Evol. Microbiol. 62, 632–637.

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.

    Article  CAS  Google Scholar 

  • Im, W.T., Kim, S.Y., Liu, Q.M., Yang, J.E., Lee, S.T., and Yi, T.H. 2010. Nocardioides ginsengisegetis sp. nov., isolated from soil of a ginseng field. J. Microbiol. 48, 623–628.

    Article  PubMed  CAS  Google Scholar 

  • Joung, Y. and Joh, K. 2011. Mucilaginibacter myungsuensis sp. nov., isolated from a mesotrophic artificial lake. Int. J. Syst. Evol. Microbiol. 61, 1506–1510.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S.J., Jung, Y.T., Oh, K.H., Oh, T.K., and Yoon, J.H. 2011. Mucilaginibacter boryungensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61, 1549–1553.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B.C., Lee, K.H., Kim, M.N., Lee, J., and Shin, K.S. 2010. Mucilaginibacter dorajii sp. nov., isolated from the rhizosphere of Platycodon grandiflorum. FEMS Microbiol. Lett. 309, 130–135.

    PubMed  CAS  Google Scholar 

  • Kim, B.C., Poo, H., Lee, K.H., Kim, M.N., Kwon, O.Y., and Shin, K.S. 2012. Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. Int. J. Syst. Evol. Microbiol. 62, 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press, Cambridge, New York, N.Y., USA.

    Book  Google Scholar 

  • Männistö, M.K., Tiirola, M., McConnell, J., and Häggblom, M.M. 2010. Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int. J. Syst. Evol. Microbiol. 60, 2849–2856.

    Article  PubMed  Google Scholar 

  • Mesbah, M., Premachandran, U., and Whitman, W. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    Article  CAS  Google Scholar 

  • Moore, D.D. and Dowhan, D. 1995. Preparation and analysis of DNA, pp. 2–11. In Ausubel, F.W., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.), Current Protocols in Molecular Biology. Wiley, New York, N.Y., USA.

    Google Scholar 

  • Pankratov, T.A., Tindall, B.J., Liesack, W., and Dedysh, S.N. 2007. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic sphagnum peat bog. Int. J. Syst. Evol. Microbiol. 57, 2349–2354.

    Article  PubMed  CAS  Google Scholar 

  • Park, C.S., Yoo, M.H., Noh, K.H., and Oh, D.K. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87, 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Perry, L.B. 1973. Gliding motility in some non-spreading flexibacteria. J. Appl. Bacteriol. 36, 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Quan, L.H., Piao, J.Y., Min, J.W., Kim, H.B., Kim, S.R., Yang, D.U., and Yang, D.C. 2011. Biotransformation of ginsenoside Rb1 to prosapogenins, gypenoside XVII, ginsenoside Rd, ginsenoside F2, and compound K by Leuconostoc mesenteroides DC102. J. Ginseng Res. 35, 344–351.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101., MIDI Inc., Newark, DE, USA.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Ten, L.N., Im, W.T., Kim, M.K., Kang, M.S., and Lee, S.T. 2004. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Methods 56, 375–382.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.

    Article  Google Scholar 

  • Urai, M., Aizawa, T., Nakagawa, Y., Nakajima, M., and Sunairi, M. 2008. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int. J. Syst. Evol. Microbiol. 58, 2046–2050.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., An, D.S., Kim, S.G., Jin, F.X., Kim, S.C., Lee, S.T., and Im, W.T. 2012. Ramlibacter ginsenosidimutans sp. nov., with ginsenoside-converting activity. J. Microbiol. Biotechnol. 22, 311–315.

    Article  PubMed  CAS  Google Scholar 

  • Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., and et al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.

    Article  Google Scholar 

  • Zhao, X., Wang, J., Li, J., Fu, L., Gao, J., Du, X., Bi, H., Zhou, Y., and Tai, G. 2009. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J. Ind. Microbiol. Biotechnol. 36, 721–726.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Taek Im.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JK., Choi, TE., Liu, QM. et al. Mucilaginibacter ginsenosidivorax sp. nov., with ginsenoside converting activity isolated from sediment. J Microbiol. 51, 394–399 (2013). https://doi.org/10.1007/s12275-013-2653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2653-4

Keywords

Navigation