Skip to main content
Log in

Ruminococcus faecis sp. nov., isolated from human faeces

  • Note
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacterial strain Eg2T, an anaerobic, Gram-positive, non-motile, and non-spore-forming coccus, was isolated from human faeces. The optimal temperature for its growth was 37°C. Oxidase activity was negative, but catalase activity was positive. The strain was able to hydrolyze esculin and to produce acids from the fermentation of several substrates, including glucose. Lactic and acetic acids were the main products of glucose fermentation. The major fatty acids present in this strain were C16:0, C14:0, and C18:1 cis11 DMA. The G+C content was 43.4 mol%. Based on the 16S rRNA gene sequence, strain Eg2T was closely related to species of the genus Ruminococcus (96.3% similarity to R. torques and 96.2% similarity to R. lactaris), and its taxonomic position was placed within the Clostridium cluster XIVa. Based on phenotypic, chemotaxonomic, genotypic, and phylogenetic evidence, we propose that this novel strain be assigned to the genus Ruminococcus and be named Ruminococcus faecis sp. nov. The type strain is Eg2T (=KCTC 5757T =JCM 15917T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backhed, F., R.E. Ley, J.L. Sonnenburg, D.A. Peterson, and J.I. Gordon. 2005. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920.

    Article  PubMed  Google Scholar 

  • Baker, G.C., J.J. Smith, and D.A. Cowan. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55, 541–555.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.

    Article  PubMed  CAS  Google Scholar 

  • Collins, M.D., P.A. Lawson, A. Willems, J.J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J.A. Farrow. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44, 812–826.

    Article  PubMed  CAS  Google Scholar 

  • Devillard, E., D.B. Goodheart, S.K. Karnati, E.A. Bayer, R. Lamed, J. Miron, K.E. Nelson, and M. Morrison. 2004. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J. Bacteriol. 186, 136–145.

    Article  PubMed  CAS  Google Scholar 

  • Domingo, M.C., A. Huletsky, M. Boissinot, K.A. Bernard, F.J. Picard, and M.G. Bergeron. 2008. Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. Int. J. Syst. Evol. Microbiol. 58, 1393–1397.

    Article  PubMed  CAS  Google Scholar 

  • Eckburg, P.B., E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S.R. Gill, K.E. Nelson, and D.A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308, 1635–1638.

    Article  PubMed  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  PubMed  CAS  Google Scholar 

  • Frank, D.N., A.L. St. Amand, R.A. Feldman, E.C. Boedeker, N. Harpaz, and N.R. Pace. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104, 13780–13785.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, J.M. and C. Saiz-Jimenez. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, M. and T.D. Taylor. 2009. The human intestinal microbiome: A new frontier of human biology. DNA Res. 16, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Kluge, A.G. and F.S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18, 1–32.

    Article  Google Scholar 

  • Kumar, S., M. Nei, J. Dudley, and K. Tamura. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Ley, R.E., M. Hamady, C. Lozupone, P.J. Turnbaugh, R.R. Ramey, J.S. Bircher, M.L. Schlegel, and et al. 2008. Evolution of mammals and their gut microbes. Science 320, 1647–1651.

    Article  PubMed  CAS  Google Scholar 

  • MIDI. 1999. Sherlock Microbial Identification System Operating Manual, version 3.0. Newark, MIDI, Inc., DE, USA.

    Google Scholar 

  • Moore, W.E.C., J.L. Johnson, and L.V. Holdeman. 1976. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int. J. Syst. Bacteriol. 26, 238–252.

    Article  Google Scholar 

  • Rincon, M.T., J.C. Martin, V. Aurilia, S.I. McCrae, G.J. Rucklidge, M.D. Reid, E.A. Bayer, R. Lamed, and H.J. Flint. 2004. ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. J. Bacteriol. 186, 2576–2585.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl. 20, 16.

    Google Scholar 

  • Simmering, R., D. Taras, A. Schwiertz, G. Le Blay, B. Gruhl, P.A. Lawson, M.D. Collins, and M. Blaut. 2002. Ruminococcus luti sp. nov., isolated from a human faecal sample. Syst. Appl. Microbiol. 25, 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt, E. and B.M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.

    Article  CAS  Google Scholar 

  • Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  • Turnbaugh, P.J., R.E. Ley, M. Hamady, C.M. Fraser-Liggett, R. Knight, and J.I. Gordon. 2007. The human microbiome project. Nature 449, 804–810.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., S. Ahrne, B. Jeppsson, and G. Molin. 2005. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol. Ecol. 54, 219–231.

    Article  PubMed  CAS  Google Scholar 

  • Wayne, L.G., D.J. Brenner, and R.R. Colwell. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MS., Roh, S.W. & Bae, JW. Ruminococcus faecis sp. nov., isolated from human faeces. J Microbiol. 49, 487–491 (2011). https://doi.org/10.1007/s12275-011-0505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0505-7

Keywords

Navigation