Skip to main content
Log in

One-dimensional ZnO nanostructures: Solution growth and functional properties

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their current and future diverse technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronic, and energy harvesting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

    Article  CAS  Google Scholar 

  2. Look, D. C. Recent advances in ZnO materials and devices. Mat. Sci. Eng. B-.Adv. 2001, 80, 383–387.

    Article  Google Scholar 

  3. Heo, Y. W.; Norton, D. P.; Tien, L. C.; Kwon, Y.; Kang, B. S.; Ren, F.; Pearton, S. J.; LaRoche, J. R. ZnO nanowire growth and devices. Mat. Sci. Eng. R 2004, 47, 147.

    Article  CAS  Google Scholar 

  4. Yi, G. C.; Wang, C. R.; Park, W. I. ZnO nanorods: Synthesis, characterization and applications. Semicond. Sci. Technol. 2005, 20, S22–S34.

    Article  CAS  Google Scholar 

  5. Wang, Z. L. Oxide nanobelts and nanowires—growth, properties and applications. J. Nanosci. Nanotechno 2008, 8, 27–55.

    Article  CAS  Google Scholar 

  6. Wang, Z. L. Splendid one-dimensional nanostructures of zinc oxide: A new nanomaterial family for nanotechnology. ACS Nano 2008, 2, 1987–1992.

    Article  CAS  Google Scholar 

  7. Wang, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sci. Eng. R 2009, 64, 33–71.

    Article  CAS  Google Scholar 

  8. Wang, Z. L. Ten years’ venturing in ZnO nanostructures: From discovery to scientific understanding and to technology applications. Chinese Sci. Bull. 2009, 54, 4021–4034.

    Article  CAS  Google Scholar 

  9. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

    Article  CAS  Google Scholar 

  10. Govender, K.; Boyle, D. S.; O’Brien, P.; Binks, D.; West, D.; Coleman, D. Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Adv. Mater. 2002, 14, 1221–1224.

    Article  CAS  Google Scholar 

  11. Park, W. I.; Yi, G. C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 2004, 16, 87–90.

    Article  CAS  Google Scholar 

  12. Mao, D. S.; Wang, X.; Li, W.; Liu, X. H.; Li, Q.; Xu, J. F. Electron field emission from hydrogen-free amorphous carbon-coated ZnO tip array. J. Vac. Sci. Technol. B 2002, 20, 278–281.

    Article  CAS  Google Scholar 

  13. Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 2003, 83, 144–146.

    Article  CAS  Google Scholar 

  14. Wang, W. Z.; Zeng, B. Q.; Yang, J.; Poudel, B.; Huang, J. Y.; Naughton, M. J.; Ren, Z. F. Aligned ultralong ZnO nanobelts and their enhanced field emission. Adv. Mater. 2006, 18, 3275–3278.

    Article  CAS  Google Scholar 

  15. Wei, T. Y.; Yeh, P. H.; Lu, S. Y.; Wang, Z. L. Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. J. Am. Chem. Soc. 2009, 131, 17690–17695.

    Article  CAS  Google Scholar 

  16. Yeh, P. H.; Li, Z.; Wang, Z. L. Schottky-gated probe-free ZnO nanowire biosensor. Adv. Mater. 2009, 21, 4975–4978.

    Article  CAS  Google Scholar 

  17. Zhou, J.; Gu, Y. D.; Hu, Y. F.; Mai, W. J.; Yeh, P. H.; Bao, G.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 2009, 94, 191103.

    Article  CAS  Google Scholar 

  18. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  CAS  Google Scholar 

  19. Levy-Clement, C.; Tena-Zaera, R.; Ryan, M. A.; Katty, A.; Hodes, G. CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Adv. Mater. 2005, 17, 1512–1515.

    Article  CAS  Google Scholar 

  20. Weintraub, B.; Wei, Y. G.; Wang, Z. L. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew. Chem. Int. Ed. 2009, 48, 8981–8985.

    Article  CAS  Google Scholar 

  21. Wei, Y. G.; Xu, C.; Xu, S.; Li, C.; Wu, W. Z.; Wang, Z. L. Planar waveguide-nanowire integrated three-dimensional dye-sensitized solar cells. Nano Lett. 2010, 10, 2092–2096.

    Article  CAS  Google Scholar 

  22. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  CAS  Google Scholar 

  23. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

    Article  CAS  Google Scholar 

  24. Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.

    Article  CAS  Google Scholar 

  25. Wang, Z. L. The new field of nanopiezotronics. Mater. Today 2007, 10, 20–28.

    Article  Google Scholar 

  26. Wang, Z. L. Nanopiezotronics. Adv. Mater. 2007, 19, 889–892.

    Article  CAS  Google Scholar 

  27. Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.

    Article  CAS  Google Scholar 

  28. Laudise, R. A.; Ballman, A. A. Hydrothermal synthesis of zinc oxide and zinc sulfide. J. Phys. Chem. 1960, 64, 688–691.

    Article  CAS  Google Scholar 

  29. Verges, M. A.; Mifsud, A.; Serna, C. J. Formation of rodlike zinc-oxide microcrystals in homogeneous solutions. J. Chem. Soc., Faraday Trans. 1990, 86, 959–963.

    Article  CAS  Google Scholar 

  30. Vayssieres, L.; Keis, K.; Lindquist, S. E.; Hagfeldt, A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 2001, 105, 3350–3352.

    Article  CAS  Google Scholar 

  31. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.

    Article  CAS  Google Scholar 

  32. Huang, M. H.; Wu, Y. Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. D. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116.

    Article  CAS  Google Scholar 

  33. Yao, B. D.; Chan, Y. F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81, 757–759.

    Article  CAS  Google Scholar 

  34. Park, W. I.; Yi, G. C.; Kim, M. Y.; Pennycook, S. J. ZnO Nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 2002, 14, 1841–1843.

    Article  CAS  Google Scholar 

  35. Park, W. I.; Kim, D. H.; Jung, S. W.; Yi, G. C. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 2002, 80, 4232–4234.

    Article  CAS  Google Scholar 

  36. Yuan, H.; Zhang, Y. Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD. J. Cryst. Growth 2004, 263, 119–124.

    Article  CAS  Google Scholar 

  37. Heo, Y. W.; Varadarajan, V.; Kaufman, M.; Kim, K.; Norton, D. P.; Ren, F.; Fleming, P. H. Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett. 2002, 81, 3046–3048.

    Article  CAS  Google Scholar 

  38. Sun, Y.; Fuge, G. M.; Ashfold, M. N. R. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chem. Phys. Lett. 2004, 396, 21–26.

    Article  CAS  Google Scholar 

  39. Hong, J. I.; Bae, J.; Wang, Z. L.; Snyder, R. L. Roomtemperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays. Nanotechnology 2009, 20, 085609.

    Article  CAS  Google Scholar 

  40. Chiou, W. T.; Wu, W. Y.; Ting, J. M. Growth of single crystal ZnO nanowires using sputter deposition. Diam. Relat. Mater. 2003, 12, 1841–1844.

    Article  CAS  Google Scholar 

  41. Xu, C. K.; Xu, G. D.; Liu, Y. K.; Wang, G. H. A simple and novel route for the preparation of ZnO nanorods. Solid State Commun. 2002, 122, 175–179.

    Article  CAS  Google Scholar 

  42. Lin, D. D.; Pan, W.; Wu, H. Morphological control of centimeter long aluminum-doped zinc oxide nanofibers prepared by electrospinning. J. Am. Ceram. Soc. 2007, 90, 71–76.

    Article  CAS  Google Scholar 

  43. Lin, D.; Wu, H.; Pan, W. Photoswitches and memories assembled by electrospinning aluminum-doped zinc oxide single nanowires. Adv. Mater. 2007, 19, 3968–3972.

    Article  CAS  Google Scholar 

  44. Sui, X. M.; Shao, C. L.; Liu, Y. C. White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning. Appl. Phys. Lett. 2005, 87, 113115.

    Article  CAS  Google Scholar 

  45. Wu, J. J.; Wen, H. I.; Tseng, C. H.; Liu, S. C. Well-aligned ZnO nanorods via hydrogen treatment of ZnO films. Adv. Funct. Mater. 2004, 14, 806–810.

    Article  CAS  Google Scholar 

  46. Zhang, H.; Yang, D. R.; Ma, X. Y.; Du, N.; Wu, J. B.; Que, D. L. Straight and thin ZnO nanorods: Hectogram-scale synthesis at low temperature and cathodoluminescence. J. Phys. Chem. B 2006, 110, 827–830.

    Article  CAS  Google Scholar 

  47. Chang, P. C.; Lu, J. G. ZnO nanowire field-effect transistors. IEEE T. Electron Dev. 2008, 55, 2977–2987.

    Article  CAS  Google Scholar 

  48. Xu, S.; Wei, Y.; Kirkham, M.; Liu, J.; Mai, W.; Davidovic, D.; Snyder, R. L.; Wang, Z. L. Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc. 2008, 130, 14958–14959.

    Article  CAS  Google Scholar 

  49. Govender, K.; Boyle, D. S.; Kenway, P. B.; O’Brien, P. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 2004, 14, 2575–2591.

    Article  CAS  Google Scholar 

  50. Xu, S.; Adiga, N.; Ba, S.; Dasgupta, T.; Wu, C. F. J.; Wang, Z. L. Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 2009, 3, 1803–1812.

    Article  CAS  Google Scholar 

  51. Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W.; Steiner, T. Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 2005, 50, 293–340.

    Article  CAS  Google Scholar 

  52. Klingshirn, C. ZnO: From basics towards applications. Phys. Status Solidi B 2007, 244, 3027–3073.

    Article  CAS  Google Scholar 

  53. Schmidt-Mende, L.; MacManus-Driscoll, J. L. ZnO—nanostructures, defects, and devices. Mater. Today 2007, 10, 40–48.

    Article  CAS  Google Scholar 

  54. Zang, J. F.; Li, C. M.; Cui, X. Q.; Wang, J. X.; Sun, X. W.; Dong, H.; Sun, C. Q. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanal. 2007, 19, 1008–1014.

    Article  CAS  Google Scholar 

  55. Baruah, S.; Dutta, J. pH-dependent growth of zinc oxide nanorods. J. Cryst. Growth 2009, 311, 2549–2554.

    Article  CAS  Google Scholar 

  56. Xu, S.; Shen, Y.; Ding, Y.; Wang, Z. L. Growth and transfer of monolithic horizontal ZnO nanowire superstructures onto flexible substrates. Adv. Funct. Mater. 2010, 20, 1493–1495.

    Article  CAS  Google Scholar 

  57. Li, W. J.; Shi, E. W.; Zhong, W. Z.; Yin, Z. W. Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 1999, 203, 186–196.

    Article  CAS  Google Scholar 

  58. Demianets, L. N.; Kostomarov, D. V.; Kuz’mina, I. P.; Pushko, S. V. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr. Rep. 2002, 47, S86–S98.

    Article  CAS  Google Scholar 

  59. Liu, B.; Zeng, H. C. Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 2004, 20, 4196–4204.

    Article  CAS  Google Scholar 

  60. Viswanatha, R.; Amenitsch, H.; Sarma, D. D. Growth kinetics of ZnO nanocrystals: A few surprises. J. Am. Chem. Soc. 2007, 129, 4470–4475.

    Article  CAS  Google Scholar 

  61. Demianets, L. N.; Kostomarov, D. V. Mechanism of zinc oxide single crystal growth under hydrothermal conditions. Ann. Chim. Sci. Mat. 2001, 26, 193–198.

    Article  CAS  Google Scholar 

  62. Dem’yanets, L. N.; Kostomarov, D. V.; Kuz-mina, I. P. Chemistry and kinetics of ZnO growth from alkaline hydrothermal solutions. Inorg. Mater. 2002, 38, 124–131.

    Article  Google Scholar 

  63. Kawska, A.; Duchstein, P.; Hochrein, O.; Zahn, D. Atomistic mechanisms of ZnO aggregation from ethanolic solution: Ion association, proton transfer, and self-organization. Nano Lett. 2008, 8, 2336–2340.

    Article  CAS  Google Scholar 

  64. Yamabi, S.; Imai, H. Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 2002, 12, 3773–3778.

    Article  CAS  Google Scholar 

  65. Zhang, J.; Sun, L. D.; Yin, J. L.; Su, H. L.; Liao, C. S.; Yan, C. H. Control of ZnO morphology via a simple solution route. Chem. Mater. 2002, 14, 4172–4177.

    Article  CAS  Google Scholar 

  66. Cheng, B.; Samulski, E. T. Hydrothermal synthesis of onedimensional ZnO nanostructures with different aspect ratios. Chem. Commun. 2004, 986–987.

  67. Liu, B.; Zeng, H. C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 2003, 125, 4430–4431.

    Article  CAS  Google Scholar 

  68. Cao, H. L.; Qian, X. F.; Gong, Q.; Du, W. M.; Ma, X. D.; Zhu, Z. K. Shape- and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature. Nanotechnology 2006, 17, 3632–3636.

    Article  CAS  Google Scholar 

  69. Hou, X. M.; Zhou, F.; Sun, Y. B.; Liu, W. M. Ultrasoundassisted synthesis of dentritic ZnO nanostructure in ionic liquid. Mater. Lett. 2007, 61, 1789–1792.

    Article  CAS  Google Scholar 

  70. Alammar, T.; Mudring, A. V. Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Mater. Lett. 2009, 63, 732–735.

    Article  CAS  Google Scholar 

  71. Yin, M.; Gu, Y.; Kuskovsky, I. L.; Andelman, T.; Zhu, Y.; Neumark, G. F.; O’Brien, S. Zinc oxide quantum rods. J. Am. Chem. Soc. 2004, 126, 6206–6207.

    Article  CAS  Google Scholar 

  72. Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188–1191.

    Article  CAS  Google Scholar 

  73. Zhang, D. F.; Sun, L. D.; Yin, J. L.; Yan, C. H.; Wang, R. M. Attachment-driven morphology evolvement of rectangular ZnO nanowires. J. Phys. Chem. B 2005, 109, 8786–8790.

    Article  CAS  Google Scholar 

  74. Guo, L.; Ji, Y. L.; Xu, H. B.; Simon, P.; Wu, Z. Y. Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure. J. Am. Chem. Soc. 2002, 124, 14864–14865.

    Article  CAS  Google Scholar 

  75. Liu, J. P.; Huang, X. T.; Li, Y. Y.; Ji, X. X.; Li, Z. K.; He, X.; Sun, F. L. Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: Direct solution synthesis, photoluminescence, and field emission. J. Phys. Chem. C 2007, 111, 4990–4997.

    Article  CAS  Google Scholar 

  76. Gao, Y. F.; Nagai, M.; Chang, T. C.; Shyue, J. J. Solutionderived ZnO nanowire array film as photoelectrode in dyesensitized solar cells. Cryst. Growth Des. 2007, 7, 2467–2471.

    Article  CAS  Google Scholar 

  77. Tak, Y.; Yong, K. J. Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 2005, 109, 19263–19269.

    Article  CAS  Google Scholar 

  78. Xu, C. K.; Shin, P.; Cao, L. L.; Gao, D. Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 125–129.

    Article  CAS  Google Scholar 

  79. Postels, B.; Wehmann, H. H.; Bakin, A.; Kreye, M.; Fuhrmann, D.; Blaesing, J.; Hangleiter, A.; Krost, A.; Waag, A. Controlled low-temperature fabrication of ZnO nanopillars with a wet-chemical approach. Nanotechnology 2007, 18, 195602.

    Article  CAS  Google Scholar 

  80. Hua, G. M.; Zhang, Y.; Zhang, J. X.; Cao, X. L.; Xu, W.; Zhang, L. D. Fabrication of ZnO nanowire arrays by cycle growth in surfactantless aqueous solution and their applications on dye-sensitized solar cells. Mater. Lett. 2008, 62, 4109–4111.

    Article  CAS  Google Scholar 

  81. Tang, Q.; Zhou, W. J.; Shen, J. M.; Zhang, W.; Kong, L. F.; Qian, Y. T. A template-free aqueous route to ZnO nanorod arrays with high optical property. Chem. Commun. 2004, 712–713.

  82. Xu, S.; Wang, Z. L. Unpublished results.

  83. Boyle, D. S.; Govender, K.; O’Brien, P. Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: Substrate effects and evidence of the importance of counter-ions in the control of crystallite growth. Chem. Commun. 2002, 80–81.

  84. Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466.

    Article  CAS  Google Scholar 

  85. Ahuja, I. S.; Yadava, C. L.; Singh, R. Structural information on manganese(II), cobalt(II), nickel(II), zinc(II) and cadmium (II) sulphate complexes with hexamethylenetetramine (a potentially tetradentate ligand) from their magnetic moments, electronic and infrared spectra. J. Mol. Struct. 1982, 81, 229–234.

    Article  CAS  Google Scholar 

  86. Baruah, S.; Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mat. 2009, 10, 013001.

    Article  CAS  Google Scholar 

  87. Ashfold, M. N. R.; Doherty, R. P.; Ndifor-Angwafor, N. G.; Riley, D. J.; Sun, Y. The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 2007, 515, 8679–8683.

    Article  CAS  Google Scholar 

  88. Unalan, H. E.; Hiralal, P.; Rupesinghe, N.; Dalal, S.; Milne, W. I.; Amaratunga, G. A. J. Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 2008, 19, 255608.

    Article  CAS  Google Scholar 

  89. Jung, S. H.; Oh, E.; Lee, K. H.; Park, W.; Jeong, S. H. A sonochemical method for fabricating aligned ZnO nanorods. Adv. Mater. 2007, 19, 749–753.

    Article  CAS  Google Scholar 

  90. Shi, L.; Bao, K. Y.; Cao, J.; Qian, Y. T. Sunlight-assisted fabrication of a hierarchical ZnO nanorod array structure. CrystEngComm 2009, 11, 2009–2014.

    Article  CAS  Google Scholar 

  91. Xu, S.; Lao, C.; Weintraub, B.; Wang, Z. L. Densitycontrolled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J. Mater. Res. 2008, 23, 2072–2077.

    Article  CAS  Google Scholar 

  92. Cheng, C. W.; Yan, B.; Wong, S. M.; Li, X. L.; Zhou, W. W.; Yu, T.; Shen, Z. X.; Yu, H. Y.; Fan, H. J. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Inter. 2010, 2, 1824–1828.

    Article  CAS  Google Scholar 

  93. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034.

    Article  CAS  Google Scholar 

  94. Liu, T. Y.; Liao, H. C.; Lin, C. C.; Hu, S. H.; Chen, S. Y. Biofunctional ZnO nanorod arrays grown on flexible substrates. Langmuir 2006, 22, 5804–5809.

    Article  CAS  Google Scholar 

  95. Manekkathodi, A.; Lu, M. Y.; Wang, C. W.; Chen, L. J. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater. 2010, 22, 4059–4063.

    Article  CAS  Google Scholar 

  96. Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.

    Article  CAS  Google Scholar 

  97. Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 2011, 50, 1683–1687.

    Article  CAS  Google Scholar 

  98. Na, J. S.; Gong, B.; Scarel, G.; Parsons, G. N. Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hydrothermal crystal synthesis and thin film atomic layer deposition. ACS Nano 2009, 3, 3191–3199.

    Article  CAS  Google Scholar 

  99. Kang, B. S.; Pearton, S. J.; Ren, F. Low temperature (< 100 degrees C) patterned growth of ZnO nanorod arrays on Si. Appl. Phys. Lett. 2007, 90, 083104.

    Article  CAS  Google Scholar 

  100. Xu, S.; Wei, Y. G.; Liu, J.; Yang, R.; Wang, Z. L. Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. Nano Lett. 2008, 8, 4027–4032.

    Article  CAS  Google Scholar 

  101. Sun, H. K.; Luo, M.; Weng, W. J.; Cheng, K.; Du, P.; Shen, G.; Han, G. R. Position and density control in hydrothermal growth of ZnO nanorod arrays through pre-formed micro/ nanodots. Nanotechnology 2008, 19, 395602.

    Article  CAS  Google Scholar 

  102. Ma, T.; Guo, M.; Zhang, M.; Zhang, Y. J.; Wang, X. D. Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 2007, 18, 035605.

    Article  CAS  Google Scholar 

  103. Hsiao, C. S.; Peng, C. H.; Chen, S. Y.; Liou, S. C. Tunable growth of ZnO nanorods synthesized in aqueous solutions at low temperatures. J. Vac. Sci. Technol. B 2006, 24, 288–291.

    Article  CAS  Google Scholar 

  104. Qiu, J. J.; Li, X. M.; He, W. Z.; Park, S. J.; Kim, H. K.; Hwang, Y. H.; Lee, J. H.; Kim, Y. D. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology 2009, 20, 155603.

    Article  CAS  Google Scholar 

  105. Cao, X. L.; Zeng, H. B.; Wang, M.; Xu, X. J.; Fang, M.; Ji, S. L.; Zhang, L. D. Large scale fabrication of quasi-aligned ZnO stacking nanoplates. J. Phys. Chem. C 2008, 112, 5267–5270.

    Article  CAS  Google Scholar 

  106. Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. D. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231–1236.

    Article  CAS  Google Scholar 

  107. Yang, Y.; Chu, Y.; Zhang, Y. P.; Yang, F. Y.; Liu, J. L. Polystyrene-ZnO core-shell microspheres and hollow ZnO structures synthesized with the sulfonated polystyrene templates. J. Solid State Chem. 2006, 179, 470–475.

    Article  CAS  Google Scholar 

  108. Fang, Y. P.; Pang, Q.; Wen, X. G.; Wang, B. N.; Yang, S. H. Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate. Small 2006, 2, 612–615.

    Article  CAS  Google Scholar 

  109. Kar, S.; Dev, A.; Chaudhuri, S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays. J. Phys. Chem. B 2006, 110, 17848–17853.

    Article  CAS  Google Scholar 

  110. Peterson, R. B.; Fields, C. L.; Gregg, B. A. Epitaxial chemical deposition of ZnO nanocolumns from NaOH solutions. Langmuir 2004, 20, 5114–5118.

    Article  CAS  Google Scholar 

  111. Zhou, Z. Z.; Deng, Y. L. Kinetics study of ZnO nanorod growth in solution. J. Phys. Chem. C 2009, 113, 19853–19858.

    Article  CAS  Google Scholar 

  112. Liu, J.; She, J. C.; Deng, S. Z.; Chen, J.; Xu, N. S. Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics. J. Phys. Chem. C 2008, 112, 11685–11690.

    Article  CAS  Google Scholar 

  113. Weintraub, B.; Chang, S.; Singamaneni, S.; Han, W. H.; Choi, Y. J.; Bae, J. H.; Kirkham, M.; Tsukruk, V. V.; Deng, Y. L. Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission. Nanotechnology 2008, 19, 435302.

    Article  CAS  Google Scholar 

  114. Gao, P. X.; Song, J. H.; Liu, J.; Wang, Z. L. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 2007, 19, 67–72.

    Article  CAS  Google Scholar 

  115. Zeng, H. B.; Cui, J. B.; Cao, B. Q.; Gibson, U.; Bando, Y.; Golberg, D. Electrochemical deposition of ZnO nanowire arrays: Organization, doping, and properties. Sci. Adv. Mater. 2010, 2, 336–358.

    Article  CAS  Google Scholar 

  116. Izaki, M.; Watanabe, M.; Aritomo, H.; Yamaguchi, I.; Asahina, S.; Shinagawa, T.; Chigane, M.; Inaba, M.; Tasaka, A. Zinc oxide nano-cauliflower array with room temperature ultraviolet light emission. Cryst. Growth Des. 2008, 8, 1418–1421.

    Article  CAS  Google Scholar 

  117. Yu, L. G.; Zhang, G. M.; Li, S. Q.; Xi, Z. H.; Guo, D. Z. Fabrication of arrays of zinc oxide nanorods and nanotubes in aqueous solution under an external voltage. J. Cryst. Growth 2007, 299, 184–188.

    Article  CAS  Google Scholar 

  118. Konenkamp, R.; Boedecker, K.; Lux-Steiner, M. C.; Poschenrieder, M.; Zenia, F.; Levy-Clement, C.; Wagner, S. Thin film semiconductor deposition on free-standing ZnO columns. Appl. Phys. Lett. 2000, 77, 2575–2577.

    Article  CAS  Google Scholar 

  119. Cui, J. B.; Soo, Y. C.; Chen, T. P.; Gibson, U. J. Lowtemperature growth and characterization of Cl-doped ZnO nanowire arrays. J. Phys. Chem. C 2008, 112, 4475–4479.

    Article  CAS  Google Scholar 

  120. Cui, J. B.; Gibson, U. J. Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays. Appl. Phys. Lett. 2005, 87, 133108.

    Article  CAS  Google Scholar 

  121. Elias, J.; Tena-Zaera, R.; Levy-Clement, C. Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. J. Electroanal. Chem. 2008, 621, 171–177.

    Article  CAS  Google Scholar 

  122. Zhao, J.; Jin, Z. G.; Li, T.; Liu, X. X.; Liu, Z. F. Growth of ZnO nanorods by the chemical solution method with assisted electrical field. J. Am. Ceram. Soc. 2006, 89, 2654–2659.

    Article  CAS  Google Scholar 

  123. Elias, J.; Tena-Zaera, R.; Levy-Clement, C. Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays. J. Phys. Chem. C 2008, 112, 5736–5741.

    Article  CAS  Google Scholar 

  124. Xu, L. F.; Guo, Y.; Liao, Q.; Zhang, J. P.; Xu, D. S. Morphological control of ZnO nanostructures by electrodeposition. J. Phys. Chem. B 2005, 109, 13519–13522.

    Article  CAS  Google Scholar 

  125. Tena-Zaera, R.; Elias, J.; Wang, G.; Levy-Clement, C. Role of chloride ions on electrochemical deposition of ZnO nanowire arrays from O-2 reduction. J. Phys. Chem. C 2007, 111, 16706–16711.

    Article  CAS  Google Scholar 

  126. Tena-Zaera, R.; Elias, J.; Levy-Clement, C.; Bekeny, C.; Voss, T.; Mora-Sero, I.; Bisquert, J. Influence of the potassium chloride concentration on the physical properties of electrodeposited ZnO nanowire arrays. J. Phys. Chem. C 2008, 112, 16318–16323.

    Article  CAS  Google Scholar 

  127. Anthony, S. P.; Lee, J. I.; Kim, J. K. Tuning optical band gap of vertically aligned ZnO nanowire arrays grown by homoepitaxial electrodeposition. Appl. Phys. Lett. 2007, 90, 103107.

    Article  CAS  Google Scholar 

  128. Zheng, M. J.; Zhang, L. D.; Li, G. H.; Shen, W. Z. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett. 2002, 363, 123–128.

    Article  CAS  Google Scholar 

  129. Zhou, H. J.; Wong, S. S. A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe2O3 nanostructures and nanostructured arrays. ACS Nano 2008, 2, 944–958.

    Article  CAS  Google Scholar 

  130. Liu, B.; Zeng, H. C. Fabrication of ZnO “dandelions” via a modified Kirkendall process. J. Am. Chem. Soc. 2004, 126, 16744–16746.

    Article  CAS  Google Scholar 

  131. Cong, H. P.; Yu, S. H. Hybrid ZnO-dye hollow spheres with new optical properties from a self-assembly process based on Evans blue dye and cetyltrimethylammonium bromide. Adv. Funct. Mater. 2007, 17, 1814–1820.

    Article  CAS  Google Scholar 

  132. Zhang, J.; Sun, L. D.; Pan, H. Y.; Liao, C. S.; Yan, C. H. ZnO nanowires fabricated by a convenient route. New J. Chem. 2002, 26, 33–34.

    Article  CAS  Google Scholar 

  133. Sun, X. M.; Chen, X.; Deng, Z. X.; Li, Y. D. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater. Chem. Phys. 2003, 78, 99–104.

    Article  Google Scholar 

  134. Zhang, H.; Yang, D.; Ji, Y. J.; Ma, X. Y; Xu, J.; Que, D. L. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J. Phys. Chem. B 2004, 108, 3955–3958.

    Article  CAS  Google Scholar 

  135. Atanasova, P.; Weitz, R. T.; Gerstel, P.; Srot, V.; Kopold, P.; van Aken, P. A.; Burghard, M.; Bill, J. DNA-templated synthesis of ZnO thin layers and nanowires. Nanotechnology 2009, 20, 365302.

    Article  CAS  Google Scholar 

  136. Kim, J. H.; Kim, E. M.; Andeen, D.; Thomson, D.; DenBaars, S. P.; Lange, F. F. Growth of heteroepitaxial ZnO thin films on GaN-buffered Al2O3(0001) substrates by lowtemperature hydrothermal synthesis at 90 °C. Adv. Funct. Mater. 2007, 17, 463–471.

    Article  CAS  Google Scholar 

  137. Shen, L. M.; Bao, N. Z.; Yanagisawa, K.; Zheng, Y. Q.; Domen, K.; Gupta, A.; Grimes, C. A. Direct growth of comet-like superstructures of Au-ZnO submicron rod arrays by solvothermal soft chemistry process. J. Solid State Chem. 2007, 180, 213–220.

    Article  CAS  Google Scholar 

  138. Gao, P. X.; Lee, J. L.; Wang, Z. L. Multicolored ZnO nanowire architectures on trenched silicon substrates. J. Phys. Chem. C 2007, 111, 13763–13769.

    Article  CAS  Google Scholar 

  139. Lee, J. Y.; Yin, D. H.; Horiuchi, S. Site and morphology controlled ZnO deposition on Pd catalyst prepared from Pd/PMMA thin film using UV lithography. Chem. Mater. 2005, 17, 5498–5503.

    Article  CAS  Google Scholar 

  140. Xu, C. X.; Wei, A.; Sun, X. W.; Dong, Z. L. Aligned ZnO nanorods synthesized by a simple hydrothermal reaction. J. Phys. D: Appl. Phys. 2006, 39, 1690–1693.

    Article  CAS  Google Scholar 

  141. Cao, B. Q.; Cai, W. P.; Duan, G. T.; Li, Y.; Zhao, Q.; Yu, D. P. A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties. Nanotechnology 2005, 16, 2567–2574.

    Article  CAS  Google Scholar 

  142. Liu, R.; Vertegel, A. A.; Bohannan, E. W.; Sorenson, T. A.; Switzer, J. A. Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chem. Mater. 2001, 13, 508–512.

    Article  CAS  Google Scholar 

  143. Niarchos, G.; Makarona, E.; Tsamis, C. Growth of ZnO nanorods on patterned templates for efficient, large-area energy scavengers. Microsyst. Technol. 2010, 16, 669–675.

    Article  CAS  Google Scholar 

  144. Ahsanulhaq, Q.; Umar, A.; Hahn, Y. B. Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: Growth mechanism and structural and optical properties. Nanotechnology 2007, 18, 115603.

    Article  CAS  Google Scholar 

  145. Nayak, J.; Sahu, S. N.; Kasuya, J.; Nozaki, S. Effect of substrate on the structure and optical properties of ZnO nanorods. J. Phys. D: Appl. Phys. 2008, 41, 115303.

    Article  CAS  Google Scholar 

  146. Zhou, H. L.; Chen, A.; Jian, L. K.; Ooi, K. F.; Goh, G. K. L.; Zang, K. Y.; Chua, S. J. Template-directed selective growth of ordered ZnO nanostructures on GaN by the hydrothermal method. J. Cryst. Growth 2008, 310, 3626–3629.

    Article  CAS  Google Scholar 

  147. Cole, J. J.; Wang, X.; Knuesel, R. J.; Jacobs, H. O. Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells. Nano Lett. 2008, 8, 1477–1481.

    Article  CAS  Google Scholar 

  148. Lee, S. D.; Kim, Y. S.; Yi, M. S.; Choi, J. Y.; Kim, S. W. Morphology control and electroluminescence of ZnO nanorod/GaN heterojunctions prepared using aqueous solution. J. Phys. Chem. C 2009, 113, 8954–8958.

    Article  CAS  Google Scholar 

  149. Cole, J. J.; Wang, X. Y.; Knuesel, R. J.; Jacobs, H. O. Patterned growth and transfer of ZnO micro- and nanocrystals with size and location control. Adv. Mater. 2008, 20, 1474–1478.

    Article  CAS  Google Scholar 

  150. Kim, J. H.; Andeen, D.; Lange, F. F. Hydrothermal growth of periodic, single-crystal ZnO microrods and microtunnels. Adv. Mater. 2006, 18, 2453–2457.

    Article  CAS  Google Scholar 

  151. Le, H. Q.; Chua, S. J.; Koh, Y. W.; Loh, K. P.; Chen, Z.; Thompson, C. V.; Fitzgerald, E. A. Growth of single crystal ZnO nanorods on GaN using an aqueous solution method. Appl. Phys. Lett. 2005, 87, 101908.

    Article  CAS  Google Scholar 

  152. Pauporte, T.; Lincot, D.; Viana, B.; Pelle, F. Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition. Appl. Phys. Lett. 2006, 89, 233112.

    Article  CAS  Google Scholar 

  153. Le, H. Q.; Chua, S. J.; Loh, K. P.; Fitzgerald, E. A.; Koh, Y. W. Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis. Nanotechnology 2006, 17, 483–488.

    Article  CAS  Google Scholar 

  154. Zhang, H.; Yang, D. R.; Li, D. S.; Ma, X. Y.; Li, S. Z.; Que, D. L. Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. Cryst. Growth Des. 2005, 5, 547–550.

    Article  CAS  Google Scholar 

  155. Wu, W. B.; Hu, G. D.; Cui, S. G.; Zhou, Y.; Wu, H. T. Epitaxy of vertical ZnO nanorod arrays on highly (001)-oriented ZnO seed monolayer by a hydrothermal route. Cryst. Growth Des. 2008, 8, 4014–4020.

    Article  CAS  Google Scholar 

  156. Zhou, Y.; Wu, W. B.; Hu, G. D.; Wu, H. T.; Cui, S. G. Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine. Mater. Res. Bull. 2008, 43, 2113–2118.

    Article  CAS  Google Scholar 

  157. Tian, Z. R. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J. Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc. 2002, 124, 12954–12955.

    Article  CAS  Google Scholar 

  158. Yang, Z.; Liu, Q. H.; Yu, H. C.; Zou, B. S.; Wang, Y. G.; Wang, T. H. Substrate-free growth, characterization and growth mechanism of ZnO nanorod close-packed arrays. Nanotechnology 2008, 19, 035704.

    Article  CAS  Google Scholar 

  159. Mclaren, A.; Valdes-Solis, T.; Li, G. Q.; Tsang, S. C. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 2009, 131, 12540–12541.

    Article  CAS  Google Scholar 

  160. Hidber, P. C.; Graule, T. J.; Gauckler, L. J. Citric acid—A dispersant for aqueous alumina suspensions. J. Am. Ceram. Soc. 1996, 79, 1857–1867.

    Article  CAS  Google Scholar 

  161. Tian, Z. R. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. F. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821–826.

    Article  CAS  Google Scholar 

  162. Liang, L.; Liu, J.; Windisch, C. F.; Exarhos, G. J.; Lin, Y. H. Direct assembly of large arrays of oriented conducting polymer nanowires. Angew. Chem. Int. Ed. 2002, 41, 3665–3668.

    Article  CAS  Google Scholar 

  163. Tian, Z. R. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; Xu, H. F. Large oriented arrays and continuous films of TiO2-based nanotubes. J. Am. Chem. Soc. 2003, 125, 12384–12385.

    Article  CAS  Google Scholar 

  164. Yan, J.; Fang, X. S.; Zhang, L. D.; Bando, Y.; Gautam, U. K.; Dierre, B.; Sekiguchi, T.; Golberg, D. Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. Nano Lett. 2008, 8, 2794–2799.

    Article  CAS  Google Scholar 

  165. Choopun, S.; Hongsith, N.; Tanunchai, S.; Chairuangsri, T.; Krua-in, C.; Singkarat, S.; Vilaithonga, T.; Mangkorntong, P.; Mangkorntong, N. Single-crystalline ZnO nanobelts by RF sputtering. J. Cryst. Growth 2005, 282, 365–369.

    Article  CAS  Google Scholar 

  166. Wei, Y. G.; Ding, Y.; Li, C.; Xu, S.; Ryo, J. H.; Dupuis, R.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Growth of vertically aligned ZnO nanobelt arrays on GaN substrate. J. Phys. Chem. C 2008, 112, 18935–18937.

    CAS  Google Scholar 

  167. Xi, Y.; Hu, C. G.; Han, X. Y.; Xiong, Y. F.; Gao, P. X.; Liu, G. B. Hydrothermal synthesis of ZnO nanobelts and gas sensitivity property. Solid State Commun. 2007, 141, 506–509.

    Article  CAS  Google Scholar 

  168. Yang, J. H.; Liu, G. M.; Lu, J.; Qiu, Y. F.; Yang, S. H. Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate. Appl. Phys. Lett. 2007, 90, 103109.

    Article  CAS  Google Scholar 

  169. Song, R. Q.; Xu, A. W.; Deng, B.; Li, Q.; Chen, G. Y. From layered basic zinc acetate nanobelts to hierarchical zinc oxide nanostructures and porous zinc oxide nanobelts. Adv. Funct. Mater. 2007, 17, 296–306.

    Article  CAS  Google Scholar 

  170. Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395–4398.

    Article  CAS  Google Scholar 

  171. Zhang, J.; Sun, L. D.; Liao, C. S.; Yan, C. H. A simple route towards tubular ZnO. Chem. Commun. 2002, 262–263.

  172. She, G. W.; Zhang, X. H.; Shi, W. S.; Fan, X.; Chang, J. C. Electrochemical/chemical synthesis of highly-oriented singlecrystal ZnO nanotube arrays on transparent conductive substrates. Electrochem. Commun. 2007, 9, 2784–2788.

    Article  CAS  Google Scholar 

  173. Sun, Y.; Fuge, G. M.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film. Adv. Mater. 2005, 17, 2477–2481.

    Article  CAS  Google Scholar 

  174. Jiang, H.; Hu, J.; Gu, F.; Li, C. Self-assembly of solid or tubular ZnO rods into twinning microprisms via a hydrothermal route. J. Alloys Compd. 2009, 478, 550–553.

    Article  CAS  Google Scholar 

  175. Wang, Z.; Qian, X. F.; Yin, J.; Zhu, Z. K. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir 2004, 20, 3441–3448.

    Article  CAS  Google Scholar 

  176. Yu, K.; Jin, Z. G.; Liu, X. X.; Zhao, J.; Feng, J. Y. Shape alterations of ZnO nanocrystal arrays fabricated from NH3·H2O solutions. Appl. Surf. Sci. 2007, 253, 4072–4078.

    Article  CAS  Google Scholar 

  177. Xi, Y.; Song, J. H.; Xu, S.; Yang, R. S.; Gao, Z. Y.; Hu, C. G.; Wang, Z. L. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J. Mater. Chem. 2009, 19, 9260–9264.

    Article  CAS  Google Scholar 

  178. Yang, A. L.; Cui, Z. L. ZnO layer and tubular structures synthesized by a simple chemical solution route. Mater. Lett. 2006, 60, 2403–2405.

    Article  CAS  Google Scholar 

  179. Elias, J.; Tena-Zaera, R.; Wang, G. Y.; Levy-Clement, C. Conversion of ZnO nanowires into nanotubes with tailored dimensions. Chem. Mater. 2008, 20, 6633–6637.

    Article  CAS  Google Scholar 

  180. Yu, H. D.; Zhang, Z. P.; Han, M. Y.; Hao, X. T.; Zhu, F. R. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J. Am. Chem. Soc. 2005, 127, 2378–2379.

    Article  CAS  Google Scholar 

  181. Israr, M. Q.; Sadaf, J. R.; Yang, L. L.; Nur, O.; Willander, M.; Palisaitis, J.; Persson, P. O. A. Trimming of aqueous chemically grown ZnO nanorods into ZnO nanotubes and their comparative optical properties. Appl. Phys. Lett. 2009, 95, 073114.

    Article  CAS  Google Scholar 

  182. Sun, Y.; Riley, D. J.; Ashfold, M. N. R. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. J. Phys. Chem. B 2006, 110, 15186–15192.

    Article  CAS  Google Scholar 

  183. Li, Q. C.; Kumar, V.; Li, Y.; Zhang, H. T.; Marks, T. J.; Chang, R. P. H. Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mater. 2005, 17, 1001–1006.

    Article  CAS  Google Scholar 

  184. Tong, Y. H.; Liu, Y. C.; Shao, C. L.; Liu, Y. X.; Xu, C. S.; Zhang, J. Y.; Lu, Y. M.; Shen, D. Z.; Fan, X. W. Growth and optical properties of faceted hexagonal ZnO nanotubes. J. Phys. Chem. B 2006, 110, 14714–14718.

    Article  CAS  Google Scholar 

  185. Tong, Y. H.; Liu, Y. C.; Dong, L.; Zhao, D. X.; Zhang, J. Y.; Lu, Y. M.; Shen, D. Z.; Fan, X. W. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J. Phys. Chem. B 2006, 110, 20263–20267.

    Article  CAS  Google Scholar 

  186. She, G. W.; Zhang, X. H.; Shi, W. S.; Fan, X.; Chang, J. C.; Lee, C. S.; Lee, S. T.; Liu, C. H. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Appl. Phys. Lett. 2008, 92, 053111.

    Article  CAS  Google Scholar 

  187. Li, F.; Ding, Y.; Gao, P. X. X.; Xin, X. Q.; Wang, Z. L. Single-cystal hexagonal disks and rings of ZnO: Low-temperature, large-scale synthesis and growth mechanism. Angew. Chem. Int. Ed. 2004, 43, 5238–5242.

    Article  CAS  Google Scholar 

  188. Magalhaes, M.; Pusiol, D.; Ramia, M. E.; Neto, A. M. F. Phase diagram of a lyotropic mixture sodium bis (2-ethylhexyl) sulfosuccinate/dodecanol/water: Reverse micellar, cylindrical, lamellar, and sponge phases. J. Chem. Phys. 1998, 108, 3835–3843.

    Article  CAS  Google Scholar 

  189. Jung, S.; Cho, W.; Lee, H. J.; Oh, M. Self-template-directed formation of coordination-polymer hexagonal tubes and rings, and their calcination to ZnO rings. Angew. Chem. Int. Ed. 2009, 48, 1459–1462.

    Article  CAS  Google Scholar 

  190. Liu, X. G. Zinc oxide nano- and microfabrication from coordination-polymer templates. Angew. Chem. Int. Ed. 2009, 48, 3018–3021.

    Article  CAS  Google Scholar 

  191. Oner, M.; Norwig, J.; Meyer, W. H.; Wegner, G. Control of ZnO crystallization by a PEO-b-PMAA diblock copolymer. Chem. Mater. 1998, 10, 460–463.

    Article  Google Scholar 

  192. Taubert, A.; Kubel, C.; Martin, D. C. Polymer-induced microstructure variation in zinc oxide crystals precipitated from aqueous solution. J. Phys. Chem. B 2003, 107, 2660–2666.

    Article  CAS  Google Scholar 

  193. Zhang, S.; Shen, Y.; Fang, H.; Xu, S.; Song, J. H.; Wang, Z. L. Growth and replication of ordered ZnO nanowire arrays on general flexible substrates. J. Mater. Chem. 2010, 20, 10606–10610.

    Article  CAS  Google Scholar 

  194. Wang, B. G.; Shi, E. W.; Zhong, W. Z. Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions. Cryst. Res. Techol. 1998, 33, 937–941.

    Article  CAS  Google Scholar 

  195. Zhang, T. R.; Dong, W. J.; Keeter-Brewer, M.; Konar, S.; Njabon, R. N.; Tian, Z. R. Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J. Am. Chem. Soc. 2006, 128, 10960–10968.

    Article  CAS  Google Scholar 

  196. Zhang, T. R.; Dong, W. J.; Njabon, R. N.; Varadan, V. K.; Tian, Z. R. Kinetically probing site-specific heterogeneous nucleation and hierarchical growth of nanobranches. J. Phys. Chem. C 2007, 111, 13691–13695.

    Article  CAS  Google Scholar 

  197. Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y. B. Sequential nucleation and growth of complex nanostructured films. Adv. Funct. Mater. 2006, 16, 335–344.

    Article  CAS  Google Scholar 

  198. Sounart, T. L.; Liu, J.; Voigt, J. A.; Huo, M.; Spoerke, E. D.; McKenzie, B. Secondary nucleation and growth of ZnO. J. Am. Chem. Soc. 2007, 129, 15786–15793.

    Article  CAS  Google Scholar 

  199. Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666–671.

    Article  CAS  Google Scholar 

  200. Mo, M.; Yu, J. C.; Zhang, L. Z.; Li, S. K. A. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv. Mater. 2005, 17, 756–760.

    Article  CAS  Google Scholar 

  201. Liu, B.; Zeng, H. C. Hollow ZnO microspheres with complex nanobuilding units. Chem. Mater. 2007, 19, 5824–5826.

    Article  CAS  Google Scholar 

  202. Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971.

    Article  CAS  Google Scholar 

  203. Koh, Y. W.; Loh, K. P. Hexagonally packed zinc oxide nanorod bundles on hydrotalcite sheets. J. Mater. Chem. 2005, 15, 2508–2514.

    Article  CAS  Google Scholar 

  204. Chow, L.; Lupan, O.; Heinrich, H.; Chai, G. Self-assembly of densely packed and aligned bilayer ZnO nanorod arrays. Appl. Phys. Lett. 2009, 94, 163105.

    Article  CAS  Google Scholar 

  205. Thevenot, F.; Szymanski, R.; Chaumette, P. Preparation and characterization of Al-rich Zn-Al hydrotalcite-like compounds. Clays Clay Miner. 1989, 37, 396–402.

    Article  CAS  Google Scholar 

  206. Liu, J. P.; Huang, X. T.; Li, Y. Y.; Sulieman, K. M.; He, X.; Sun, F. L. Facile and large-scale production of ZnO/Zn-Al layered double hydroxide hierarchical heterostructures. J. Phys. Chem. B 2006, 110, 21865–21872.

    Article  CAS  Google Scholar 

  207. Zhang, H.; Yang, D. R.; Ma, X. Y.; Que, D. L. Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction. J. Phys. Chem. B 2005, 109, 17055–17059.

    Article  CAS  Google Scholar 

  208. Li, H. X.; Xia, M. X.; Dai, G. Z.; Yu, H. C.; Zhang, Q. L.; Pan, A. L.; Wang, T. H.; Wang, Y. G.; Zou, B. S. Growth of oriented zinc oxide nanowire array into novel hierarchical structures in aqueous solutions. J. Phys. Chem. C 2008, 112, 17546–17553.

    Article  CAS  Google Scholar 

  209. Xu, C. K.; Wu, J. M.; Desai, U. V.; Gao, D. Multilayer assembly of nanowire arrays for dye-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 8122–8125.

    Article  CAS  Google Scholar 

  210. Liu, L.; Fu, L.; Liu, Y.; Liu, Y. L.; Jiang, P.; Liu, S. Q.; Gao, M. Y.; Tang, Z. Y. Bioinspired synthesis of vertically aligned ZnO nanorod arrays: Toward greener chemistry. Cryst. Growth Des. 2009, 9, 4793–4796.

    Article  CAS  Google Scholar 

  211. Tang, Y. W.; Hu, X. Y.; Chen, M. J.; Luo, L. J.; Li, B. H.; Zhang, L. Z. CdSe nanocrystal sensitized ZnO core-shell nanorod array films: Preparation and photovoltaic properties. Electrochim. Acta 2009, 54, 2742–2747.

    Article  CAS  Google Scholar 

  212. Hao, Y. Z.; Pei, J.; Wei, Y.; Cao, Y. H.; Jiao, S. H.; Zhu, F.; Li, J. J.; Xu, D. H. Efficient semiconductor-sensitized solar cells based on poly(3-hexylthiophene)@CdSe@ZnO core-shell nanorod arrays. J. Phys. Chem. C 2010, 114, 8622–8625.

    Article  CAS  Google Scholar 

  213. Wang, X. N.; Zhu, H. J.; Xu, Y. M.; Wang, H.; Tao, Y.; Hark, S.; Xiao, X. D.; Li, Q. A. Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: Synthesis and photoelectrochemical properties. ACS Nano 2010, 4, 3302–3308.

    Article  CAS  Google Scholar 

  214. Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y. B. Sequential nucleation and growth of complex nanostructured films. Adv. Funct. Mater. 2006, 16, 335–344.

    Article  CAS  Google Scholar 

  215. Shi, L.; Xu, Y. M.; Hark, S. K.; Liu, Y.; Wang, S.; Peng, L. M.; Wong, K. W.; Li, Q. Optical and electrical performance of SnO2 capped ZnO nanowire arrays. Nano Lett. 2007, 7, 3559–3563.

    Article  CAS  Google Scholar 

  216. Plank, N. O. V.; Snaith, H. J.; Ducati, C.; Bendall, J. S.; Schmidt-Mende, L.; Welland, M. E. A simple low temperature synthesis route for ZnO-MgO core-shell nanowires. Nanotechnology 2008, 19, 465603.

    Article  CAS  Google Scholar 

  217. Plank, N. O. V.; Howard, I.; Rao, A.; Wilson, M. W. B.; Ducati, C.; Mane, R. S.; Bendall, J. S.; Louca, R. R. M.; Greenham, N. C.; Miura, H.; Friend, R. H.; Snaith, H. J.; Welland, M. E. Efficient ZnO nanowire solid-state dyesensitized solar cells using organic dyes and core-shell nanostructures. J. Phys. Chem. C 2009, 113, 18515–18522.

    Article  CAS  Google Scholar 

  218. Tak, Y.; Yong, K. A novel heterostructure of Co3O4/ZnO nanowire array fabricated by photochemical coating method. J. Phys. Chem. C 2008, 112, 74–79.

    Article  CAS  Google Scholar 

  219. Wang, Z.; Qian, X. F.; Li, Y.; Yin, J.; Zhu, Z. K. Largescale synthesis of tube-like ZnS and cable-like ZnS-ZnO arrays: Preparation through the sulfuration conversion from ZnO arrays via a simple chemical solution route. J. Solid State Chem. 2005, 178, 1589–1594.

    Article  CAS  Google Scholar 

  220. Panda, S. K.; Dev, A.; Chaudhuri, S. Fabrication and luminescent properties of c-axis oriented ZnO-ZnS core-shell and ZnS nanorod arrays by sulfidation of aligned ZnO nanorod arrays. J. Phys. Chem. C 2007, 111, 5039–5043.

    Article  CAS  Google Scholar 

  221. Chen, C. Y.; Lin, C. A.; Chen, M. J.; Lin, G. R.; He, J. H. ZnO/Al2O3 core-shell nanorod arrays: Growth, structural characterization, and luminescent properties. Nanotechnology 2009, 20, 185605.

    Article  CAS  Google Scholar 

  222. Law, M.; Greene, L. E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. D. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 2006, 110, 22652–22663.

    Article  CAS  Google Scholar 

  223. Dergacheva, M. B.; Statsyuk, V. N.; Fogel, L. A. Electrodeposition of CdTe from ammonia-chloride buffer electrolytes. J. Electroanal. Chem. 2005, 579, 43–49.

    Article  CAS  Google Scholar 

  224. Kum, M. C.; Yoo, B. Y.; Rheem, Y.; Bozhilov, K. N.; Chen, W.; Mulchandani, A.; Myung, N. V. Synthesis and characterization of cadmium telluride nanowire. Nanotechnology 2008, 19, 325711.

    Article  CAS  Google Scholar 

  225. Xu, D. S.; Guo, Y. G.; Yu, D. P.; Guo, G. L.; Tang, Y. Q.; Yu, D. P. Highly ordered and well-oriented single-crystal CdTe nanowire arrays by direct-current electrodeposition. J. Mater. Res. 2002, 17, 1711–1714.

    Article  CAS  Google Scholar 

  226. Zhao, A. W.; Meng, G. W.; Zhang, L. D.; Gao, T.; Sun, S. H.; Pang, Y. T. Electrochemical synthesis of ordered CdTe nanowire arrays. Appl. Phys. A 2003, 76, 537–539.

    Article  CAS  Google Scholar 

  227. Cheng, C. W.; Liu, B.; Yang, H. Y.; Zhou, W. W.; Sun, L.; Chen, R.; Yu, S. F.; Zhang, J. X.; Gong, H.; Sun, H. D.; Fan, H. J. Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: Low-temperature hydrothermal preparation and optical properties. ACS Nano 2009, 3, 3069–3076.

    Article  CAS  Google Scholar 

  228. Dloczik, L.; Engelhardt, R.; Ernst, K.; Lux-Steiner, M. C.; Konenkamp, R. Zinc sulfide columns by chemical conversion of zinc oxide. Sens. Actuat. B-Chem. 2002, 84, 33–36.

    Article  Google Scholar 

  229. Dloczik, L.; Engelhardt, R.; Ernst, K.; Fiechter, S.; Sieber, I.; Konenkamp, R. Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns. Appl. Phys. Lett. 2001, 78, 3687–3689.

    Article  CAS  Google Scholar 

  230. Qiu, J. J.; Yu, W. D.; Gao, X. D.; Li, X. M. Sol-gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays. Nanotechnology 2006, 17, 4695–4698.

    Article  CAS  Google Scholar 

  231. Qui, J. J.; Jin, Z. G.; Liu, Z. F.; Liu, X. X.; Liu, G. Q.; Wu, W. B.; Zhang, X.; Gao, X. D. Fabrication of TiO2 nanotube film by well-aligned ZnO nanorod array film and sol-gel process. Thin Solid Films 2007, 515, 2897–2902.

    Article  CAS  Google Scholar 

  232. Dawood, F.; Schaak, R. E. ZnO-templated synthesis of wurtzite-type ZnS and ZnSe nanoparticles. J. Am. Chem. Soc. 2009, 131, 424–425.

    Article  CAS  Google Scholar 

  233. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

    Article  CAS  Google Scholar 

  234. Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897.

    Article  CAS  Google Scholar 

  235. Sakano, T.; Tanaka, Y.; Nishimura, R.; Nedyalkov, N. N.; Atanasov, P. A.; Saiki, T.; Obara, M. Surface enhanced Raman scattering properties using Au-coated ZnO nanorods grown by two-step, off-axis pulsed laser deposition. J. Phys. D: Appl. Phys. 2008, 41, 235304.

    Article  CAS  Google Scholar 

  236. Wood, A.; Giersig, M.; Mulvaney, P. Fermi level equilibration in quantum dot-metal nanojunctions. J. Phys. Chem. B 2001, 105, 8810–8815.

    Article  CAS  Google Scholar 

  237. Fan, L. Y.; Yu, S. H. ZnO@Co hybrid nanotube arrays growth from electrochemical deposition: Structural, optical, photocatalytic and magnetic properties. Phys. Chem. Chem. Phys. 2009, 11, 3710–3717.

    Article  CAS  Google Scholar 

  238. Pacholski, C.; Kornowski, A.; Weller, H. Site-specific photodeposition of silver on ZnO nanorods. Angew. Chem. Int. Ed. 2004, 43, 4774–4777.

    Article  CAS  Google Scholar 

  239. Fan, F. R.; Ding, Y.; Liu, D. Y.; Tian, Z. Q.; Wang, Z. L. Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J. Am. Chem. Soc. 2009, 131, 12036–12037.

    Article  CAS  Google Scholar 

  240. Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured surfaces and assemblies as SERS media. Small 2008, 4, 1576–1599.

    Article  CAS  Google Scholar 

  241. He, H.; Cai, W. P.; Lin, Y. X.; Chen, B. S. Surface decoration of ZnO nanorod arrays by electrophoresis in the Au colloidal solution prepared by laser ablation in water. Langmuir 2010, 26, 8925–8932.

    Article  CAS  Google Scholar 

  242. Yang, S. K.; Cai, W. P.; Liu, G. Q.; Zeng, H. B. From nanoparticles to nanoplates: Preferential oriented connection of Ag colloids during electrophoretic deposition. J. Phys. Chem. C 2009, 113, 7692–7696.

    Article  CAS  Google Scholar 

  243. Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D. Au-ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 5660–5663.

    Article  CAS  Google Scholar 

  244. Trejo, M.; Santiago, P.; Sobral, H.; Rendon, L.; Pal, U. Synthesis and growth mechanism of one-dimensional Zn/ZnO core-shell nanostructures in low-temperature hydrothermal process. Cryst. Growth Des. 2009, 9, 3024–3030.

    Article  CAS  Google Scholar 

  245. Zhang, W. D. Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays. Nanotechnology 2006, 17, 1036–1040.

    Article  CAS  Google Scholar 

  246. Li, X. L.; Li, C.; Zhang, Y.; Chu, D. P.; Milne, W. I.; Fan, H. J. Atomic layer deposition of ZnO on multi-walled carbon nanotubes and its use for synthesis of CNT-ZnO heterostructures. Nanoscale Res. Lett. 2010, 5, 1836–1840.

    Article  CAS  Google Scholar 

  247. Zhang, W. D.; Jiang, L. C.; Ye, J. S. Photoelectrochemical study on charge transfer properties of ZnO nanowires promoted by carbon nanotubes. J. Phys. Chem. C 2009, 113, 16247–16253.

    Article  CAS  Google Scholar 

  248. Sernelius, B. E.; Berggren, K. F.; Jin, Z. C.; Hamberg, I.; Granqvist, C. G. Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B 1988, 37, 10244–10248.

    Article  CAS  Google Scholar 

  249. Nadarajah, A.; Word, R. C.; Meiss, J.; Konenkamp, R. Flexible inorganic nanowire light-emitting diode. Nano Lett. 2008, 8, 534–537.

    Article  CAS  Google Scholar 

  250. Fang, T. H.; Kang, S. H. Electromechanical characteristics of ZnO:Al nanorods. J. Nanosci. Nanotechnol. 2010, 10, 405–412.

    Article  CAS  Google Scholar 

  251. Look, D. C.; Claflin, B.; Alivov, Y. I.; Park, S. J. The future of ZnO light emitters. Phys. Status Solidi A 2004, 201, 2203–2212.

    Article  CAS  Google Scholar 

  252. Xiang, B.; Wang, P. W.; Zhang, X. Z.; Dayeh, S. A.; Aplin, D. P. R.; Soci, C.; Yu, D. P.; Wang, D. L. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 2007, 7, 323–328.

    Article  CAS  Google Scholar 

  253. Yuan, G. D.; Zhang, W. J.; Jie, J. S.; Fan, X.; Zapien, J. A.; Leung, Y. H.; Luo, L. B.; Wang, P. F.; Lee, C. S.; Lee, S. T. p-type ZnO nanowire arrays. Nano Lett. 2008, 8, 2591–2597.

    Article  CAS  Google Scholar 

  254. Hsu, Y. F.; Xi, Y. Y.; Tam, K. H.; Djurisic, A. B.; Luo, J. M.; Ling, C. C.; Cheung, C. K.; Ng, A. M. C.; Chan, W. K.; Deng, X.; Beling, C. D.; Fung, S.; Cheah, K. W.; Fong, P. W. K.; Surya, C. C. Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Adv. Funct. Mater. 2008, 18, 1020–1030.

    Article  CAS  Google Scholar 

  255. Lin, C. C.; Chen, H. P.; Chen, S. Y. Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO film/Si wafer in aqueous solutions. Chem. Phys. Lett. 2005, 404, 30–34.

    Article  CAS  Google Scholar 

  256. Sun, M. H.; Zhang, Q. F.; Wu, J. L. Electrical and electroluminescence properties of As-doped p-type ZnO nanorod arrays. J. Phys. D: Appl. Phys. 2007, 40, 3798–3802.

    Article  CAS  Google Scholar 

  257. Thomas, M. A.; Cui, J. B. Electrochemical growth and characterization of Ag-doped ZnO nanostructures. J. Vac. Sci. Technol. B 2009, 27, 1673–1677.

    Article  CAS  Google Scholar 

  258. Yuhas, B. D.; Zitoun, D. O.; Pauzauskie, P. J.; Yang, P. Transition-metal doped zinc oxide nanowires. Angew. Chem. Int. Ed. 2006, 45, 420–423.

    Article  CAS  Google Scholar 

  259. Cui, J.; Gibson, U. J. Enhanced nucleation, growth rate, and dopant incorporation in ZnO nanowires. J. Phys. Chem. B 2005, 109, 22074–22077.

    Article  CAS  Google Scholar 

  260. Cui, J. B.; Zeng, Q.; Gibson, U. J. Synthesis and magnetic properties of Co-doped ZnO nanowires. J. Appl. Phys. 2006, 99, 08M113.

    Article  CAS  Google Scholar 

  261. Yuhas, B. D.; Fakra, S.; Marcus, M. A.; Yang, P. D. Probing the local coordination environment for transition metal dopants in zinc oxide nanowires. Nano Lett. 2007, 7, 905–909.

    Article  CAS  Google Scholar 

  262. Liang, W. J.; Yuhas, B. D.; Yang, P. D. Magnetotransport in Co-doped ZnO nanowires. Nano Lett. 2009, 9, 892–896.

    Article  CAS  Google Scholar 

  263. Gayen, R. N.; Das, S. N.; Dalui, S.; Bhar, R.; Pal, A. K. Zinc magnesium oxide nanofibers on glass substrate by solution growth technique. J. Cryst. Growth 2008, 310, 4073–4080.

    Article  CAS  Google Scholar 

  264. Fang, T. H.; Kang, S. H. Preparation and characterization of Mg-doped ZnO nanorods. J. Alloys Compd. 2010, 492, 536–542.

    Article  CAS  Google Scholar 

  265. Shimpi, P.; Gao, P. X.; Goberman, D. G.; Ding, Y. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays. Nanotechnology 2009, 20, 125608.

    Article  CAS  Google Scholar 

  266. Spanos, J. Photolithography applied to silicon transistor technology. J. Electrochem. Soc. 1961, 108, C176–C176.

    Google Scholar 

  267. Boercker, J. E.; Schmidt, J. B.; Aydil, E. S. Transport limited growth of zinc oxide nanowires. Cryst. Growth Des. 2009, 9, 2783–2789.

    Article  CAS  Google Scholar 

  268. Coltrin, M. E.; Hsu, J. W. P.; Scrymgeour, D. A.; Creighton, J. R.; Simmons, N. C.; Matzke, C. M. Chemical kinetics and mass transport effects in solution-based selective-area growth of ZnO nanorods. J. Cryst. Growth 2008, 310, 584–593.

    Article  CAS  Google Scholar 

  269. Yi, S. H.; Choi, S. K.; Jang, J. M.; Kim, J. A.; Jung, W. G. Patterned growth of a vertically aligned zinc oxide rod array on a gallium nitride epitaxial layer by using a hydrothermal process. J. Korean Phys. Soc. 2008, 53, 227–231.

    Article  CAS  Google Scholar 

  270. Masuda, Y.; Kinoshita, N.; Sato, F.; Koumoto, K. Siteselective deposition and morphology control of UV- and visible-light-emitting ZnO crystals. Cryst. Growth Des. 2006, 6, 75–78.

    Article  CAS  Google Scholar 

  271. Morin, S. A.; Amos, F. F.; Jin, S. Biomimetic assembly of zinc oxide nanorods onto flexible polymers. J. Am. Chem. Soc. 2007, 129, 13776–13777.

    Article  CAS  Google Scholar 

  272. McCarley, R. L.; Vaidya, B.; Wei, S. Y.; Smith, A. F.; Patel, A. B.; Feng, J.; Murphy, M. C.; Soper, S. A. Resistfree patterning of surface architectures in polymer-based microanalytical devices. J. Am. Chem. Soc. 2005, 127, 842–843.

    Article  CAS  Google Scholar 

  273. Yang, P.; Zou, S. L.; Yang, W. T. Positive and negative ZnO micropatterning on functionatized polymer surfaces. Small 2008, 4, 1527–1536.

    Article  CAS  Google Scholar 

  274. Vieu, C.; Carcenac, F.; Pepin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Manin-Ferlazzo, L.; Couraud, L.; Launois, H. Electron beam lithography: Resolution limits and applications. Appl. Surf. Sci. 2000, 164, 111–117.

    Article  CAS  Google Scholar 

  275. Kim, Y.; Lee, C.; Hong, Y. J.; Yi, G.; Kim, S. S.; Cheong, H. Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Appl. Phys. Lett. 2006, 89, 163128.

    Article  CAS  Google Scholar 

  276. Lin, C. C.; Chen, S. Y.; Cheng, S. Y. Nucleation and growth behavior of well-aligned ZnO nanorods on organic substrates in aqueous solutions. J. Cryst. Growth 2005, 283, 141–146.

    Article  CAS  Google Scholar 

  277. Volk, J.; Nagata, T.; Erdelyi, R.; Barsony, I.; Toth, A. L.; Lukacs, I. E.; Czigany, Z.; Tomimoto, H.; Shingaya, Y.; Chikyow, T. Highly uniform epitaxial ZnO nanorod arrays for nanopiezotronics. Nanoscale Res. Lett. 2009, 4, 699–704.

    Article  CAS  Google Scholar 

  278. Liang, Y.; Zhen, C.; Zou, D.; Xu, D. Preparation of freestanding nanowire arrays on conductive substrates. J. Am. Chem. Soc. 2004, 126, 16338–16339.

    Article  CAS  Google Scholar 

  279. Dev, A.; Chaudhuri, S. Uniform large-scale growth of micropatterned arrays of ZnO nanowires synthesized by a surfactant assisted approach. Nanotechnology 2007, 18, 175607.

    Article  CAS  Google Scholar 

  280. Xu, S.; Ding, Y.; Wei, Y. G.; Fang, H.; Shen, Y.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Patterned growth of horizontal ZnO nanowire arrays. J. Am. Chem. Soc. 2009, 131, 6670–6671.

    Article  CAS  Google Scholar 

  281. Wang, Z. L.; Yang, R. S.; Zhou, J.; Qin, Y.; Xu, C.; Hu, Y. F.; Xu, S. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mat. Sci. Eng. R 2010, 70, 320–329.

    Article  CAS  Google Scholar 

  282. Qin, Y.; Yang, R. S.; Wang, Z. L. Growth of horizonatal ZnO nanowire arrays on any substrate. J. Phys. Chem. C 2008, 112, 18734–18736.

    CAS  Google Scholar 

  283. Park, Y. K.; Choi, H. S.; Kim, J. H.; Kim, J. H.; Hahn, Y. B. High performance field-effect transistors fabricated with laterally grown ZnO nanorods in solution. Nanotechnology 2011, 22, 185310.

    Article  CAS  Google Scholar 

  284. Babak, N.; Chris, A. M.; Stephan, J. S.; Mark, D. V. Horizontal growth and in situ assembly of oriented zinc oxide nanowires. Appl. Phys. Lett. 2004, 85, 3244–3246.

    Article  CAS  Google Scholar 

  285. Harnack, O.; Pacholski, C.; Weller, H.; Yasuda, A.; Wessels, J. M. Rectifying behavior of electrically aligned ZnO nanorods. Nano Lett. 2003, 3, 1097–1101.

    Article  CAS  Google Scholar 

  286. Andeen, D. K. J. H.; Lang, F. F.; Goh, G. K. L.; Tripathy, S. Lateral epitaxial overgrowth of ZnO in water at 90 °C. Adv. Funct. Mater. 2006, 16, 799–804.

    Article  CAS  Google Scholar 

  287. Saifullah, M. S. M.; Subramanian, K. R. V.; Kang, D. J.; Anderson, D.; Huck, W. T. S.; Jones, G. A. C.; Welland, M. E. Sub-10 nm high-aspect-ratio patterning of ZnO using an electron beam. Adv. Mater. 2005, 17, 1757–1761.

    Article  CAS  Google Scholar 

  288. Claeyssens, F.; Klini, A.; Mourka, A.; Fotakis, C. Laser patterning of Zn for ZnO nanostructure growth: Comparison between laser induced forward transfer in air and in vacuum. Thin Solid Films 2007, 515, 8529–8533.

    Article  CAS  Google Scholar 

  289. Guo, X. D.; Li, R. X.; Hang, Y.; Xu, Z. Z.; Yu, B. K.; Ma, H. L.; Lu, B.; Sun, X. W. Femtosecond laser-induced periodic surface structure on ZnO. Mater. Lett. 2008, 62, 1769–1771.

    Article  CAS  Google Scholar 

  290. Solak, H. H.; David, C.; Gobrecht, J.; Golovkina, V.; Cerrina, F.; Kim, S. O.; Nealey, P. F. Sub-50 nm period patterns with EUV interference lithography. Microelectron. Eng. 2003, 67–68, 56–62.

    Article  CAS  Google Scholar 

  291. Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 2000, 404, 53–56.

    Article  CAS  Google Scholar 

  292. Kim, K. S.; Jeong, H.; Jeong, M. S.; Jung, G. Y. Polymertemplated hydrothermal growth of vertically aligned singlecrystal ZnO nanorods and morphological transformations using structural polarity. Adv. Funct. Mater. 2010, 20, 3055–3063.

    Article  CAS  Google Scholar 

  293. Wei, Y.; Wu, W.; Guo, R.; Yuan, D.; Das, S.; Wang, Z. L. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Lett. 2010, 10, 3414–3419.

    Article  CAS  Google Scholar 

  294. Yuan, D. J.; Guo, R.; Wei, Y. G.; Wu, W. Z.; Ding, Y.; Wang, Z. L.; Das, S. Heteroepitaxial patterned growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation. Adv. Funct. Mater. 2010, 20, 3484–3489.

    Article  CAS  Google Scholar 

  295. Haynes, C. L.; Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599–5611.

    Article  CAS  Google Scholar 

  296. Zeng, H. B.; Xu, X. J.; Bando, Y.; Gautam, U. K.; Zhai, T. Y.; Fang, X. S.; Liu, B. D.; Golberg, D. Template deformation-tailored ZnO nanorod/nanowire arrays: Full growth control and optimization of field-emission. Adv. Funct. Mater. 2009, 19, 3165–3172.

    Article  CAS  Google Scholar 

  297. Li, C.; Hong, G. S.; Wang, P. W.; Yu, D. P.; Qi, L. M. Wet chemical approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals. Chem. Mater. 2009, 21, 891–897.

    Article  CAS  Google Scholar 

  298. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 1995, 67, 3114–3116.

    Article  CAS  Google Scholar 

  299. Wang, C. H.; Wong, A. S. W.; Ho, G. W. Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays. Langmuir 2007, 23, 11960–11963.

    Article  CAS  Google Scholar 

  300. Kwon, S. J.; Park, J. H.; Park, J. G. Patterned growth of ZnO nanorods by micromolding of sol-gel-derived seed layer. Appl. Phys. Lett. 2005, 87, 133112.

    Article  CAS  Google Scholar 

  301. Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X. Y.; Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3, 335–373.

    Article  CAS  Google Scholar 

  302. Hsu, J. W. P.; Tian, Z. R.; Simmons, N. C.; Matzke, C. M.; Voigt, J. A.; Liu, J. Directed spatial organization of zinc oxide nanorods. Nano Lett. 2005, 5, 83–86.

    Article  CAS  Google Scholar 

  303. Hsu, J. W. P.; Tian, Z. R.; Simmons, N. C.; Matzke, C. M.; Voigt, J. A.; Liu, J. Spatial organization of ZnO nanorods on surfaces via organic templating. Proc. SPIE 2005, 5592, 158–163.

    Article  CAS  Google Scholar 

  304. Lee, J. H.; Hon, M. H.; Chung, Y. W.; Leu, I. C. Microcontact printing of organic self-assembled monolayers for patterned growth of well-aligned ZnO nanorod arrays and their field-emission properties. J. Am. Ceram. Soc. 2009, 92, 2192–2196.

    Article  CAS  Google Scholar 

  305. Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123–2126.

    Article  CAS  Google Scholar 

  306. Kitsomboonloha, R.; Baruah, S.; Myint, M. T. Z.; Subramanian, V.; Dutta, J. Selective growth of zinc oxide nanorods on inkjet printed seed patterns. J. Cryst. Growth 2009, 311, 2352–2358.

    Article  CAS  Google Scholar 

  307. de Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 2004, 16, 203–213.

    Article  CAS  Google Scholar 

  308. Sekitani, T.; Noguchi, Y.; Zschieschang, U.; Klauk, H.; Someya, T. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc. Natl. Acad. Sci. USA 2008, 105, 4976–4980.

    Article  CAS  Google Scholar 

  309. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    Article  CAS  Google Scholar 

  310. Hariharan, C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal. A 2006, 304, 55–61.

    Article  CAS  Google Scholar 

  311. Yang, X.; Wolcottt, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2009, 9, 2331–2336.

    Article  CAS  Google Scholar 

  312. Jang, E. S.; Won, J. H.; Hwang, S. J.; Choy, J. H. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv. Mater. 2006, 18, 3309–3312.

    Article  CAS  Google Scholar 

  313. Akhavan, O. Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 2010, 4, 4174–4180.

    Article  CAS  Google Scholar 

  314. Lu, F.; Cai, W. P.; Zhang, Y. G. ZnO hierarchical micro/nanoarchitectures: Solvothermal synthesis and structurally enhanced photocatalytic performance. Adv. Funct. Mater. 2008, 18, 1047–1056.

    Article  CAS  Google Scholar 

  315. Wu, Q.; Chen, X.; Zhang, P.; Han, Y.; Chen, X.; Yan, Y.; Li, S. Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities. Cryst. Growth Des. 2008, 8, 3010–3018.

    Article  CAS  Google Scholar 

  316. Kurtz, M.; Strunk, J.; Hinrichsen, O.; Muhler, M.; Fink, K.; Meyer, B.; Woll, C. Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2. Angew. Chem. Int. Ed. 2005, 44, 2790–2794.

    Article  CAS  Google Scholar 

  317. Lin, Y. G.; Hsu, Y. K.; Chen, S. Y.; Lin, Y. K.; Chen, L. C.; Chen, K. H. Nanostructured zinc oxide nanorods with copper nanoparticles as a microreformation catalyst. Angew. Chem. Int. Ed. 2009, 48, 7586–7590.

    Article  CAS  Google Scholar 

  318. Li, C. C.; Lin, R. J.; Lin, H. P.; Lin, Y. K.; Lin, Y. G.; Chang, C. C.; Chen, L. C.; Chen, K. H. Catalytic performance of plate-type Cu/Fe nanocomposites on ZnO nanorods for oxidative steam reforming of methanol. Chem. Commun. 2011, 47, 1473–1475.

    Article  CAS  Google Scholar 

  319. Lin, Y. G.; Hsu, Y. K.; Chen, S. Y.; Chen, L. C.; Chen, K. H. Microwave-activated CuO nanotip/ZnO nanorod nanoarchitectures for efficient hydrogen production. J. Mater. Chem. 2011, 21, 324–326.

    Article  CAS  Google Scholar 

  320. Boucher, M. B.; Yi, N.; Gittleson, F.; Zugic, B.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Hydrogen production from methanol over gold supported on ZnO and CeO2 nanoshapes. J. Phys. Chem. C 2011, 115, 1261–1268.

    Article  CAS  Google Scholar 

  321. Tak, Y.; Kim, H.; Lee, D.; Yong, K. Type-II CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process: Enhanced photocatalytic activity. Chem. Commun. 2008, 4585–4587.

  322. Wang, W. W.; Zhu, Y. J.; Yang, L. X. ZnO-SnO2 hollow spheres and hierarchical nanosheets: Hydrothermal preparation, formation mechanism, and photocatalytic properties. Adv. Funct. Mater. 2007, 17, 59–64.

    Article  CAS  Google Scholar 

  323. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  CAS  Google Scholar 

  324. Li, G. R.; Hu, T.; Pan, G. L.; Yan, T. Y.; Gao, X. P.; Zhu, H. Y. Morphology-function relationship of ZnO: Polar planes, oxygen vacancies, and activity. J. Phys. Chem. C 2008, 112, 11859–11864.

    Article  CAS  Google Scholar 

  325. Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang, L.; Zhu, D. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 2004, 126, 62–63.

    Article  CAS  Google Scholar 

  326. Onda, T.; Shibuichi, S.; Satoh, N.; Tsujii, K. Super-water-repellent fractal surfaces. Langmuir 1996, 12, 2125–2127.

    Article  CAS  Google Scholar 

  327. Sun, R. D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 2001, 105, 1984–1990.

    Article  CAS  Google Scholar 

  328. Ding, Y.; Xu, S.; Zhang, Y.; Wang, A. C.; Wang, M. H.; Xiu, Y. H.; Wong, C. P.; Wang, Z. L. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry. Nanotechnology 2008, 19, 355708.

    Article  CAS  Google Scholar 

  329. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO Nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  CAS  Google Scholar 

  330. Badre, C.; Pauporté, T. Nanostructured ZnO-based surface with reversible electrochemically adjustable wettability. Adv. Mater. 2009, 21, 697–701.

    Article  CAS  Google Scholar 

  331. Guo, M.; Diao, P.; Cai, S. M. Highly hydrophilic and superhydrophobic ZnO nanorod array films. Thin Solid Films 2007, 515, 7162–7166.

    Article  CAS  Google Scholar 

  332. Xu, N. S.; Huq, S. E. Novel cold cathode materials and applications. Mat. Sci. Eng. R 2005, 48, 47–189.

    Article  CAS  Google Scholar 

  333. Dev, A.; Panda, S. K.; Kar, S.; Chakrabarti, S.; Chaudhuri, S. Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol-gel-derived ZnO thin films. J. Phys. Chem. B 2006, 110, 14266–14272.

    Article  CAS  Google Scholar 

  334. Hung, C. H.; Whang, W. T. Low-temperature solution approach toward highly aligned ZnO nanotip arrays. J. Cryst. Growth 2004, 268, 242–248.

    Article  CAS  Google Scholar 

  335. Cui, J. B.; Daghlian, C. P.; Gibson, U. J.; Pusche, R.; Geithner, P.; Ley, L. Low-temperature growth and field emission of ZnO nanowire arrays. J. Appl. Phys. 2005, 97, 044315.

    Article  CAS  Google Scholar 

  336. Wei, A.; Sun, X. W.; Xu, C. X.; Dong, Z. L.; Yu, M. B.; Huang, W. Stable field emission from hydrothermally grown ZnO nanotubes. Appl. Phys. Lett. 2006, 88, 213102.

    Article  CAS  Google Scholar 

  337. Xu, C. X.; Sun, X. W. Field emission from zinc oxide nanopins. Appl. Phys. Lett. 2003, 83, 3806–3808.

    Article  CAS  Google Scholar 

  338. Cao, B. Q.; Teng, X. M.; Heo, S. H.; Li, Y.; Cho, S. O.; Li, G. H.; Cai, W. P. Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties. J. Phys. Chem. C 2007, 111, 2470–2476.

    Article  CAS  Google Scholar 

  339. Ahsanulhaq, Q.; Kim, J. H.; Hahn, Y. B. Controlled selective growth of ZnO nanorod arrays and their field emission properties. Nanotechnology 2007, 18, 485307.

    Article  CAS  Google Scholar 

  340. Kee, C. S.; Ko, D. K.; Lee, J. Photonic band gaps of two-dimensional ZnO nanorod photonic crystals. J. Phys. D: Appl. Phys. 2005, 38, 3850–3853.

    Article  CAS  Google Scholar 

  341. Matsuu, M.; Shimada, S.; Masuya, K.; Hirano, S.; Kuwabara, M. Formation of periodically ordered zinc oxide nanopillars in aqueous solution: An approach to photonic crystals at visible wavelengths. Adv. Mater. 2006, 18, 1617–1621.

    Article  CAS  Google Scholar 

  342. Hirano, S. Oxide nanowire arrays and two-dimensional photonic crystals for control of light. J. Ceram. Soc. Jpn. 2007, 115, 92–100.

    Article  CAS  Google Scholar 

  343. Cui, J. B.; Gibson, U. Low-temperature fabrication of single-crystal ZnO nanopillar photonic bandgap structures. Nanotechnology 2007, 18, 155302.

    Article  CAS  Google Scholar 

  344. Cui, J. B. Structural and optical properties of periodically ordered ZnO nanowires. Sci. China Ser. E 2009, 52, 313–317.

    Article  CAS  Google Scholar 

  345. Volk, J.; Hakansson, A.; Miyazaki, H. T.; Nagata, T.; Shimizu, J.; Chikyow, T. Fully engineered homoepitaxial zinc oxide nanopillar array for near-surface light wave manipulation. Appl. Phys. Lett. 2008, 92, 183114.

    Article  CAS  Google Scholar 

  346. Alivov, Y. I.; Kalinina, E. V.; Cherenkov, A. E.; Look, D. C.; Ataev, B. M.; Omaev, A. K.; Chukichev, M. V.; Bagnall, D. M. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 2003, 83, 4719–4721.

    Article  CAS  Google Scholar 

  347. Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J.; Shim, H. W.; Suh, E. K.; Lee, C. J. Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem. Phys. Lett. 2002, 363, 134–138.

    Article  CAS  Google Scholar 

  348. Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Djurisic, A. B.; Ling, C. C.; Beling, C. D.; Fung, S.; Kwok, W. M.; Chan, W. K.; Phillips, D. L.; Ding, L.; Ge, W. K. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 2006, 110, 20865–20871.

    Article  CAS  Google Scholar 

  349. Lucas, M.; Wang, Z. L.; Riedo, E. Combined polarized Raman and atomic force microscopy: In situ study of point defects and mechanical properties in individual ZnO nanobelts. Applied Physics Letts. 2009, 95, 051904.

    Article  CAS  Google Scholar 

  350. Kim, Y. J.; Shang, H. M.; Cao, G. Z. Growth and characterization of [001] ZnO nanorod array on ITO substrate with electric field assisted nucleation. J. Sol-Gel Sci. Technol. 2006, 38, 79–84.

    Article  CAS  Google Scholar 

  351. Zhou, H.; Chen, X. M.; Wu, G. H.; Gao, F.; Qin, N.; Bao, D. H. Significantly enhanced red photoluminescence properties of nanocomposite films composed of a ferroelectric Bi3.6Eu0.4Ti3O12 matrix and highly c-axis-oriented ZnO nanorods on Si substrates prepared by a hybrid chemical solution method. J. Am. Chem. Soc. 2010, 132, 1790–1791.

    Article  CAS  Google Scholar 

  352. Xiang, S.; Wang, Z. L. Unpublished results.

  353. Mahalingam, T.; Lee, K. M.; Park, K. H.; Lee, S.; Ahn, Y.; Park, J. Y.; Koh, K. H. Low temperature wet chemical synthesis of good optical quality vertically aligned crystalline ZnO nanorods. Nanotechnology 2007, 18, 035606.

    Article  CAS  Google Scholar 

  354. Hu, Y. F.; Zhang, Y.; Xu, C.; Lin, L.; Snyder, R. L.; Wang, Z. L. Self-powered system with wireless data transmission. Nano Letters 2011, 11, 2572–2577.

    Article  CAS  Google Scholar 

  355. Ho, G. W.; Wong, A. S. W. One step solution synthesis towards ultra-thin and uniform single-crystalline ZnO nanowires. Appl. Phys. A 2007, 86, 457–462.

    Article  CAS  Google Scholar 

  356. Li, C. C.; Chen, H. P.; Liao, H. C.; Chen, S. Y. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 2005, 86, 183103.

    Article  CAS  Google Scholar 

  357. Lee, S. J.; Park, S. K.; Park, C. R.; Lee, J. Y.; Park, J.; Do, Y. R. Spatially separated ZnO nanopillar arrays on Pt/Si substrates prepared by electrochemical deposition. J. Phys. Chem. C 2007, 111, 11793–11801.

    Article  CAS  Google Scholar 

  358. Richters, J. P.; Voss, T.; Wischmeier, L.; Ruckmann, I.; Gutowski, J. Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires. Appl. Phys. Lett. 2008, 92, 011103.

    Article  CAS  Google Scholar 

  359. Varshni, Y. P. Temperature dependence of energy gap in semiconductors. Physica 1967, 34, 149–154.

    Article  CAS  Google Scholar 

  360. Sakai, K.; Noguchi, K.; Fukuyama, A.; Ikari, T.; Okada, T. Low-temperature photoluminescence of nanostructured ZnO crystal synthesized by pulsed-laser ablation. Jpn. J. Appl. Phys. 2009, 48, 085001.

    Article  CAS  Google Scholar 

  361. Su, F. H.; Wang, W. J.; Ding, K.; Li, G. H.; Liu, Y. F.; Joly, A. G.; Chen, W. Pressure dependence of the near-band-edge photoluminescence from ZnO microrods at low temperature. J. Phys. Chem. Solids 2006, 67, 2376–2381.

    Article  CAS  Google Scholar 

  362. Fang, F.; Zhao, D. X.; Li, B. H.; Zhang, Z. Z.; Shen, D. Z.; Wang, X. H. Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires. J. Phys. Chem. C 2010, 114, 12477–12480.

    Article  CAS  Google Scholar 

  363. Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W. Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; Room-temperature ultraviolet laser. Adv. Mater. 2003, 15, 1911–1914.

    Article  CAS  Google Scholar 

  364. Qiu, Z.; Wong, K. S.; Wu, M.; Lin, W.; Xu, H. Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation. Appl. Phys. Lett. 2004, 84, 2739–2741.

    Article  CAS  Google Scholar 

  365. Voss, T.; Kudyk, I.; Wischmeier, L.; Gutowski, J. Nonlinear optics with ZnO nanowires. Phys. Status Solidi B 2009, 246, 311–314.

    Article  CAS  Google Scholar 

  366. Johnson, J. C.; Yan, H. Q.; Schaller, R. D.; Petersen, P. B.; Yang, P. D.; Saykally, R. J. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Lett. 2002, 2, 279–283.

    Article  CAS  Google Scholar 

  367. Jeong, M. C.; Oh, B. Y.; Ham, M. H.; Myoung, J. M. Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 2006, 88, 202105.

    Article  CAS  Google Scholar 

  368. Jeong, M. C.; Oh, B. Y.; Ham, M. H.; Lee, S. W.; Myoung, J. M. ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes. Small 2007, 3, 568–572.

    Article  CAS  Google Scholar 

  369. Reddy, N. K.; Ahsanulhaq, Q.; Hahn, Y. B. Fabrication of zinc oxide nanorods based heterojunction devices using simple and economic chemical solution method. Appl. Phys. Lett. 2008, 93, 083124.

    Article  CAS  Google Scholar 

  370. Chen, C. H.; Chang, S. J.; Chang, S. P.; Li, M. J.; Chen, I. C.; Hsueh, T. J.; Hsu, C. L. Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes. Appl. Phys. Lett. 2009, 95, 223101.

    Article  CAS  Google Scholar 

  371. Xu, S.; Xu, C.; Liu, Y.; Hu, Y.; Yang, R.; Yang, Q.; Ryou, J. H.; Kim, H. J.; Lochner, Z.; Choi, S.; Dupuis, R.; Wang, Z. L. Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 2010, 22, 4749–4753.

    Article  CAS  Google Scholar 

  372. Alivov, Y. I.; Van Nostrand, J. E.; Look, D. C.; Chukichev, M. V.; Ataev, B. M. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 2003, 83, 2943–2945.

    Article  CAS  Google Scholar 

  373. Bulashevich, K. A.; Evstratov, I. Y.; Karpov, S. Y. Hybrid ZnO/III-nitride light-emitting diodes: Modelling analysis of operation. Phys. Status Solidi A 2007, 204, 241–245.

    Article  CAS  Google Scholar 

  374. Titkov, I. E.; Zubrilov, A. S.; Delimova, L. A.; Mashovets, D. V.; Liniichuk, I. A.; Grekhov, I. V. White electroluminescence from ZnO/GaN structures. Semiconductors 2007, 41, 564–569.

    Article  CAS  Google Scholar 

  375. Kishwar, S.; ul Hasan, K.; Tzamalis, G.; Nur, O.; Willander, M.; Kwack, H. S.; Dang, D. L. S. Electro-optical and cathodoluminescence properties of low temperature grown ZnO nanorods/p-GaN white light emitting diodes. Phys. Status Solidi A 2010, 207, 67–72.

    Article  CAS  Google Scholar 

  376. Guo, R.; Nishimura, J.; Matsumoto, M.; Higashihata, M.; Nakamura, D.; Okada, T. Electroluminescence from ZnO nanowire-based p-GaN/n-ZnO heterojunction light-emitting diodes. Appl. Phys. B 2009, 94, 33–38.

    Article  CAS  Google Scholar 

  377. Xu, H. Y.; Liu, Y. C.; Liu, Y. X.; Xu, C. S.; Shao, C. L.; Mu, R. Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes. Appl. Phys. B 2005, 80, 871–874.

    Article  CAS  Google Scholar 

  378. Liu, H. F.; Hu, G. X.; Gong, H.; Zang, K. Y.; Chua, S. J. Effects of oxygen on low-temperature growth and band alignment of ZnO/GaN heterostructures. J. Vac. Sci. Technol. A 2008, 26, 1462–1468.

    Article  CAS  Google Scholar 

  379. Aguilar, C. A.; Haight, R.; Mavrokefalos, A.; Korgel, B. A.; Chen, S. C. Probing electronic properties of molecular engineered zinc oxide nanowires with photoelectron spectroscopy. ACS Nano 2009, 3, 3057–3062.

    Article  CAS  Google Scholar 

  380. Ng, A. M. C.; Xi, Y. Y.; Hsu, Y. F.; Djurisic, A. B.; Chan, W. K.; Gwo, S.; Tam, H. L.; Cheah, K. W.; Fong, P. W. K.; Lui, H. F.; Surya, C. GaN/ZnO nanorod light emitting diodes with different emission spectra. Nanotechnology 2009, 20, 445201.

    Article  CAS  Google Scholar 

  381. Alivov, Y. I.; Ozgur, U.; Dogan, S.; Liu, C.; Moon, Y.; Gu, X.; Avrutin, V.; Fu, Y.; Morkoc, H. Forward-current electroluminescence from GaN/ZnO double heterostructure diode. Solid-State Electron. 2005, 49, 1693–1696.

    Article  CAS  Google Scholar 

  382. Zhang, X. M.; Lu, M. Y.; Zhang, Y.; Chen, L. J.; Wang, Z. L. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 2009, 21, 2767–2770.

    Article  CAS  Google Scholar 

  383. Bayram, C.; Teherani, F. H.; Rogers, D. J.; Razeghi, M. A hybrid green light-emitting diode comprised of n-ZnO/ (InGaN/GaN) multi-quantum-wells/p-GaN. Appl. Phys. Lett. 2008, 93, 081111.

    Article  CAS  Google Scholar 

  384. Choi, H. W.; Jeon, C. W.; Dawson, M. D.; Edwards, P. R.; Martin, R. W.; Tripathy, S. Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes. J. Appl. Phys. 2003, 93, 5978–5982.

    Article  CAS  Google Scholar 

  385. Konenkamp, R.; Word, R. C.; Schlegel, C. Vertical nanowire light-emitting diode. Appl. Phys. Lett. 2004, 85, 6004–6006.

    Article  CAS  Google Scholar 

  386. Konenkamp, R.; Word, R. C.; Godinez, M. Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. Nano Lett. 2005, 5, 2005–2008.

    Article  CAS  Google Scholar 

  387. Bolink, H. J.; Coronado, E.; Repetto, D.; Sessolo, M. Air stable hybrid organic-inorganic light emitting diodes using ZnO as the cathode. Appl. Phys. Lett. 2007, 91, 223501.

    Article  CAS  Google Scholar 

  388. Konenkamp, R.; Nadarajah, A.; Word, R. C.; Meiss, J.; Engelhardt, R. ZnO nanowires for LED and field-emission displays. J. Soc. Inf. Display 2008, 16, 609–613.

    Article  CAS  Google Scholar 

  389. Willander, M.; Lozovik, Y. E.; Wadeasa, A.; Nur, O.; Semenov, A. G.; Vonorova, N. S. Light emission from different ZnO junctions and nanostructures. Phys. Status Solidi A 2009, 206, 853–859.

    Article  CAS  Google Scholar 

  390. Wadeasa, A.; Beegum, S. L.; Raja, S.; Nur, O.; Willander, M. The demonstration of hybrid n-ZnO nanorod/p-polymer heterojunction light emitting diodes on glass substrates. Appl. Phys. A 2009, 95, 807–812.

    Article  CAS  Google Scholar 

  391. Guo, H. G.; Zhou, J. Z.; Lin, Z. G. ZnO nanorod light emitting diodes fabricated by electrochemical approaches. Electrochem. Commun. 2008, 10, 146–150.

    Article  CAS  Google Scholar 

  392. Liu, J.; Ahn, Y. H.; Park, J. Y.; Koh, K. H.; Lee, S. Hybrid light-emitting diodes based on flexible sheets of massproduced ZnO nanowires. Nanotechnology 2009, 20, 445203.

    Article  CAS  Google Scholar 

  393. Sun, X. W.; Huang, J. Z.; Wang, J. X.; Xu, Z. A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm. Nano Lett. 2008, 8, 1219–1223.

    Article  CAS  Google Scholar 

  394. Round, H. J. A note on carborundum. Electrical World 1907, 49, 309.

    Google Scholar 

  395. Livingst. A. W.; Turvey, K.; Allen, J. W. Electroluminescence in forward-biased zinc selenide Schottky diodes. Solid-State Electron. 1973, 16, 351–356.

    Article  Google Scholar 

  396. Allen, J. W.; Livingstone, A. W.; Turvey, K. Electroluminescence in reverse-biased zinc selenide Schottky diodes. Solid-State Electron. 1972, 15, 1363–1369.

    Article  CAS  Google Scholar 

  397. Lazarouk, S.; Jaguiro, P.; Katsouba, S.; Masini, G.; LaMonica, S.; Maiello, G.; Ferrari, A. Stable electroluminescence from reverse biased n-type porous silicon-aluminum Schottky junction device. Appl. Phys. Lett. 1996, 68, 2108–2110.

    Article  CAS  Google Scholar 

  398. Steckl, A. J.; Garter, M.; Birkhahn, R.; Scofield, J. Green electroluminescence from Er-doped GaN Schottky barrier diodes. Appl. Phys. Lett. 1998, 73, 2450–2452.

    Article  CAS  Google Scholar 

  399. Wang, Y. X.; Zhang, Q. F.; Sun, H.; Chang, Y. L.; Wu, J. L. Fabrication of ZnO nanowire-based diodes and their light-emitting properties. Acta Phys. Sin.-Chin. Ed. 2008, 57, 1141–1144.

    CAS  Google Scholar 

  400. Guo, H. H.; Lin, Z. H.; Feng, Z. F.; Lin, L. L.; Zhou, J. Z. White-light-emitting diode based on ZnO nanotubes. J. Phys. Chem. C 2009, 113, 12546–12550.

    Article  CAS  Google Scholar 

  401. Bano, N.; Hussain, I.; Nur, O.; Willander, M.; Kwack, H. S.; Dang, D. L. S. Study of Au/ZnO nanorods Schottky light-emitting diodes grown by low-temperature aqueous chemical method. Appl. Phys. A 2010, 100, 467–472.

    Article  CAS  Google Scholar 

  402. Tan, S. T.; Sun, X. W.; Zhao, J. L.; Iwan, S.; Cen, Z. H.; Chen, T. P.; Ye, J. D.; Lo, G. Q.; Kwong, D. L.; Teo, K. L. Ultraviolet and visible electroluminescence from n-ZnO/SiOx/(n,p)-Si heterostructured light-emitting diodes. Appl. Phys. Lett. 2008, 93, 013506.

    Article  CAS  Google Scholar 

  403. Benisty, H.; De Neve, H.; Weisbuch, C. Impact of planar microcavity effects on light extraction—Part I: Basic concepts and analytical trends. IEEE J. Quantum. Elect. 1998, 34, 1612–1631.

    Article  CAS  Google Scholar 

  404. Schnitzer, I.; Yablonovitch, E.; Caneau, C.; Gmitter, T. J.; Scherer, A. 30% external quantum efficiency from surface textured, thin-film light-emitting-diodes. Appl. Phys. Lett. 1993, 63, 2174–2176.

    Article  CAS  Google Scholar 

  405. Fujii, T.; Gao, Y.; Sharma, R.; Hu, E. L.; DenBaars, S. P.; Nakamura, S. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 2004, 84, 855–857.

    Article  CAS  Google Scholar 

  406. Kim, H.; Kim, K. K.; Choi, K. K.; Kim, H.; Song, J. O.; Cho, J.; Baik, K. H.; Sone, C.; Park, Y.; Seong, T. Y. Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry. Appl. Phys. Lett. 2007, 91, 023510.

    Article  CAS  Google Scholar 

  407. Murai, A.; Thompson, D. B.; Masui, H.; Fellows, N.; Mishra, U. K.; Nakamura, S.; DenBaars, S. P. Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding. Appl. Phys. Lett. 2006, 89, 171116.

    Article  CAS  Google Scholar 

  408. Schubert, E. F.; Kim, J. K. Solid-state light sources getting smart. Science 2005, 308, 1274–1278.

    Article  CAS  Google Scholar 

  409. Barnes, W. L. Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices. J. Lightwave Technol. 1999, 17, 2170–2182.

    Article  Google Scholar 

  410. Chen, L.; Nurmikko, A. V. Fabrication and performance of efficient blue light emitting III-nitride photonic crystals. Appl. Phys. Lett. 2004, 85, 3663–3665.

    Article  CAS  Google Scholar 

  411. Oder, T. N.; Kim, K. H.; Lin, J. Y.; Jiang, H. X. III-Nitride blue and ultraviolet photonic crystal light emitting diodes. Appl. Phys. Lett. 2004, 84, 466–468.

    Article  CAS  Google Scholar 

  412. Lu, Y.; Zhong, J.; Zhu, J.; Saraf, G.; Chen, H. H.; Duan, Z. Q.; Reyes, P.; Shen, H.; Mackie, D. M.; Wittkstruck, R. H.; Ballato, A. Novel devices using multifunctional ZnO and its nanostructures. http://dodreports.com/pdf/ada505710.pdf.

  413. Kim, K. K.; Lee, S. D.; Kim, H.; Park, J. C.; Lee, S. N.; Park, Y.; Park, S. J.; Kim, S. W. Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution. Appl. Phys. Lett. 2009, 94, 071118.

    Article  CAS  Google Scholar 

  414. An, S. J.; Chae, J. H.; Yi, G. C.; Park, G. H. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 2008, 92, 121108.

    Article  CAS  Google Scholar 

  415. Zhong, J.; Chen, H.; Saraf, G.; Lu, Y.; Choi, C. K.; Song, J. J.; Mackie, D. M.; Shen, H. Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency. Appl. Phys. Lett. 2007, 90, 203515.

    Article  CAS  Google Scholar 

  416. Lai, E.; Kim, W.; Yang, P. Vertical nanowire array-based light emitting diodes. Nano Res. 2008, 1, 123–128.

    Article  CAS  Google Scholar 

  417. Bao, J. M.; Zimmler, M. A.; Capasso, F.; Wang, X. W.; Ren, Z. F. Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 2006, 6, 1719–1722.

    Article  CAS  Google Scholar 

  418. Johnson, J. C.; Yan, H. Q.; Yang, P. D.; Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 2003, 107, 8816–8828.

    Article  CAS  Google Scholar 

  419. Kim, K. S.; Kim, S. M.; Jeong, H.; Jeong, M. S.; Jung, G. Y. Enhancement of light extraction through the wave-guiding effect of ZnO sub-microrods in InGaN blue light-emitting diodes. Adv. Funct. Mater. 2010, 20, 1076–1082.

    Article  CAS  Google Scholar 

  420. Voss, T.; Svacha, G. T.; Mazur, E.; Muller, S.; Ronning, C.; Konjhodzic, D.; Marlow, F. High-order waveguide modes in ZnO nanowires. Nano Letters. 2007, 7, 3675–3680.

    Article  CAS  Google Scholar 

  421. Park, S. H.; Kim, S. H.; Han, S. W. Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications. Nanotechnology 2007, 18, 055608.

    Article  CAS  Google Scholar 

  422. Sun, X. W.; Wang, J. X. Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode. Nano Lett. 2008, 8, 1884–1889.

    Article  CAS  Google Scholar 

  423. Granqvist, C. G. Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 2000, 60, 201–262.

    Article  CAS  Google Scholar 

  424. Bonhote, P.; Gogniat, E.; Campus, F.; Walder, L.; Gratzel, M. Nanocrystalline electrochromic displays. Displays 1999, 20, 137–144.

    Article  CAS  Google Scholar 

  425. Hu, A. Z.; Wu, F.; Liu, J. P.; Jiang, J.; Ding, R. M.; Li, X.; Cheng, C. X.; Zhu, Z. H.; Huang, X. T. Density- and adhesion-controlled ZnO nanorod arrays on the ITO flexible substrates and their electrochromic performance. J. Alloys Compd. 2010, 507, 261–266.

    Article  CAS  Google Scholar 

  426. Li, M.; Zhang, H. Y.; Guo, C. X.; Xu, J. B.; Fu, X. J. The research on suspended ZnO nanowire field-effect transistor. Chin. Phys. B 2009, 18, 1594–1597.

    Article  CAS  Google Scholar 

  427. Sun, B. Q.; Sirringhaus, H. Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors. J. Am. Chem. Soc. 2006, 128, 16231–16237.

    Article  CAS  Google Scholar 

  428. Ju, S. Y.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P. D.; Zhou, C. W.; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotech. 2007, 2, 378–384.

    Article  CAS  Google Scholar 

  429. Hsu, C. L.; Tsai, T. Y. Fabrication of fully transparent indium-doped ZnO nanowire field-effect transistors on ITO/glass substrates. J. Electrochem. Soc. 2011, 158, K20–K23.

    Article  CAS  Google Scholar 

  430. Ko, S. H.; Park, I.; Pan, H.; Misra, N.; Rogers, M. S.; Grigoropoulos, C. P.; Pisano, A. P. ZnO nanowire network transistor fabrication on a polymer substrate by lowtemperature, all-inorganic nanoparticle solution process. Appl. Phys. Lett. 2008, 92, 154102.

    Article  CAS  Google Scholar 

  431. Gao, P. X.; Liu, J.; Buchine, B. A.; Weintraub, B.; Wang, Z. L.; Lee, J. L. Bridged ZnO nanowires across trenched electrodes. Appl. Phys. Lett. 2007, 91, 142108.

    Article  CAS  Google Scholar 

  432. Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

    Article  CAS  Google Scholar 

  433. Wang, J. X.; Sun, X. W.; Yang, Y.; Huang, H.; Lee, Y. C.; Tan, O. K.; Vayssieres, L. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology 2006, 17, 4995–4998.

    Article  CAS  Google Scholar 

  434. Sun, K.; Jing, Y.; Park, N.; Li, C.; Bando, Y.; Wang, D. L. Solution synthesis of large-scale, high-sensitivity ZnO/Si hierarchical nanoheterostructure photodetectors. J. Am. Chem. Soc. 2010, 132, 15465–15467.

    Article  CAS  Google Scholar 

  435. Gao, P.; Wang, Z. Z.; Liu, K. H.; Xu, Z.; Wang, W. L.; Bai, X. D.; Wang, E. G. Photoconducting response on bending of individual ZnO nanowires. J. Mater. Chem. 2009, 19, 1002–1005.

    Article  CAS  Google Scholar 

  436. Wei, A.; Sun, X. W.; Wang, J. X.; Lei, Y.; Cai, X. P.; Li, C. M.; Dong, Z. L.; Huang, W. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl. Phys. Lett. 2006, 89, 123902.

    Article  CAS  Google Scholar 

  437. Liu, N. S.; Fang, G. J.; Zeng, W.; Long, H.; Yuan, L. Y.; Zhao, X. Z. Novel ZnO nanorod flexible strain sensor and strain friving transistor with an ultrahigh 107 scale “On”-“Off” ratio fabricated by a single-step hydrothermal reaction. J. Phys. Chem. C 2011, 115, 570–575.

    Article  CAS  Google Scholar 

  438. Kwon, S. S.; Hong, W. K.; Jo, G.; Maeng, J.; Kim, T. W.; Song, S.; Lee, T. Piezoelectric effect on the electronic transport characteristics of ZnO nanowire field-effect transistors on bent flexible substrates. Adv. Mater. 2008, 20, 4557–4562.

    Article  CAS  Google Scholar 

  439. Wei, T. Y.; Huang, C. T.; Hansen, B. J.; Lin, Y. F.; Chen, L. J.; Lu, S. Y.; Wang, Z. L. Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Appl. Phys. Lett. 2010, 96, 013508.

    Article  CAS  Google Scholar 

  440. Al-Hilli, S. M.; Willander, M.; Ost, A.; Stralfors, P. ZnO nanorods as an intracellular sensor for pH measurements. J. Appl. Phys. 2007, 102, 084304.

    Article  CAS  Google Scholar 

  441. Zhou, J.; Xu, N. S.; Wang, Z. L. Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 2006, 18, 2432–2435.

    Article  CAS  Google Scholar 

  442. Li, Z.; Yang, R. S.; Yu, M.; Bai, F.; Li, C.; Wang, Z. L. Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 2008, 112, 20114–20117.

    Article  CAS  Google Scholar 

  443. Gonzalez-Valls, I.; Lira-Cantu, M. Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review. Energy Environ. Sci. 2009, 2, 19–34.

    Article  CAS  Google Scholar 

  444. Lee, Y. J.; Ruby, D. S.; Peters, D. W.; McKenzie, B. B.; Hsu, J. W. P. ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett. 2008, 8, 1501–1505.

    Article  CAS  Google Scholar 

  445. O’Regan, B.; Gratzel, M. A Low-cost, high-efficiency solarcell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

    Article  Google Scholar 

  446. Pradhan, B.; Batabyal, S. K.; Pal, A. J. Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 769–773.

    Article  CAS  Google Scholar 

  447. Baxter, J. B.; Aydil, E. S. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 2005, 86, 053114.

    Article  CAS  Google Scholar 

  448. Beermann, N.; Vayssieres, L.; Lindquist, S. E.; Hagfeldt, A. Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 2000, 147, 2456–2461.

    Article  CAS  Google Scholar 

  449. Baxter, J. B.; Schmuttenmaer, C. A. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B 2006, 110, 25229–25239.

    Article  CAS  Google Scholar 

  450. Martinson, A. B. F.; McGarrah, J. E.; Parpia, M. O. K.; Hupp, J. T. Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2006, 8, 4655–4659.

    Article  CAS  Google Scholar 

  451. Baxter, J. B.; Walker, A. M.; van Ommering, K.; Aydil, E. S. Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology 2006, 17, S304–S312.

    Article  CAS  Google Scholar 

  452. Hsu, Y. F.; Xi, Y. Y.; Djurisic, A. B.; Chan, W. K. ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition. Appl. Phys. Lett. 2008, 92, 133507.

    Article  CAS  Google Scholar 

  453. Jiang, C. Y.; Sun, X. W.; Tan, K. W.; Lo, G. Q.; Kyaw, A. K. K.; Kwong, D. L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Appl. Phys. Lett. 2008, 92, 143101.

    Article  CAS  Google Scholar 

  454. Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007, 7, 1793–1798.

    Article  CAS  Google Scholar 

  455. Han, J. B.; Fan, F. R.; Xu, C.; Lin, S. S.; Wei, M.; Duan, X.; Wang, Z. L. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 2010, 21, 405203.

    Article  CAS  Google Scholar 

  456. Jensen, R. A.; Van Ryswyk, H.; She, C. X.; Szarko, J. M.; Chen, L. X.; Hupp, J. T. Dye-sensitized solar cells: Sensitizer-dependent injection into ZnO nanotube electrodes. Langmuir 2010, 26, 1401–1404.

    Article  CAS  Google Scholar 

  457. Yodyingyong, S.; Zhang, Q. F.; Park, K.; Dandeneau, C. S.; Zhou, X. Y.; Triampo, D.; Cao, G. Z. ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Appl. Phys. Lett. 2010, 96, 073115.

    Article  CAS  Google Scholar 

  458. Ku, C. H.; Wu, J. J. Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dyesensitized solar cells. Nanotechnology 2007, 18, 505706.

    Article  CAS  Google Scholar 

  459. Cheng, K.; Cheng, G.; Wang, S. J.; Fu, D. W.; Zou, B. S.; Du, Z. L. Electron transport properties in ZnO nanowires/poly(3-hexylthiophene) hybrid nanostructure. Mater. Chem. Phys. 2010, 124, 1239–1242.

    Article  CAS  Google Scholar 

  460. Ku, C. H.; Wua, J. J. Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Appl. Phys. Lett. 2007, 91, 093117.

    Article  CAS  Google Scholar 

  461. Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 2007, 90, 263501.

    Article  CAS  Google Scholar 

  462. Hosono, E.; Fujihara, S.; Honna, I.; Zhou, H. S. The fabrication of an upright-standing zinc oxide nanosheet for use in dye-sensitized solar cells. Adv. Mater. 2005, 17, 2091–2094.

    Article  CAS  Google Scholar 

  463. Xu, F.; Dai, M.; Lu, Y. N.; Sun, L. T. Hierarchical ZnO nanowire-nanosheet architectures for high power conversion efficiency in dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 2776–2782.

    Article  CAS  Google Scholar 

  464. Fu, Y. S.; Sun, J.; Xie, Y.; Liu, J.; Wang, H. L.; Du, X. W. ZnO hierarchical nanostructures and application on high-efficiency dye-sensitized solar cells. Mater. Sci. Eng., B 2010, 166, 196–202.

    Article  CAS  Google Scholar 

  465. Gao, Y. F.; Nagai, M. Morphology evolution of ZnO thin films from aqueous solutions and their application to solar cells. Langmuir 2006, 22, 3936–3940.

    Article  CAS  Google Scholar 

  466. Zou, D. C.; Wang, D.; Chu, Z. Z.; Lv, Z. B.; Fan, X. Fiber-shaped flexible solar cells. Coord. Chem. Rev. 2010, 254, 1169–1178.

    Article  CAS  Google Scholar 

  467. Wu, J. J.; Chen, G. R.; Yang, H. H.; Ku, C. H.; Lai, J. Y. Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells. Appl. Phys. Lett. 2007, 90, 213109.

    Article  CAS  Google Scholar 

  468. Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108.

    Article  CAS  Google Scholar 

  469. Tak, Y.; Kim, H.; Lee, D.; Yong, K. Type-II CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process: Enhanced photocatalytic activity. Chem. Commun. 2008, 4585–4587.

  470. Lee, M.; Yang, R.; Li, C.; Wang, Z. L. Nanowire-quantum dot hybridized cell for harvesting sound and solar energies. J. Phys. Chem. Lett. 2010, 1, 2929–2935.

    Article  CAS  Google Scholar 

  471. Tena-Zaera, R.; Katty, A.; Bastide, S.; Levy-Clement, C. Annealing effects on the physical properties of electrodeposited ZnO/CdSe core-shell nanowire arrays. Chem. Mater. 2007, 19, 1626–1632.

    Article  CAS  Google Scholar 

  472. Zhang, Y.; Xie, T. F.; Jiang, T. F.; Wei, X.; Pang, S.; Wang, X.; Wang, D. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices. Nanotechnology 2009, 20, 155707.

    Article  CAS  Google Scholar 

  473. Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.

    Article  CAS  Google Scholar 

  474. Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 2008, 130, 4007–4015.

    Article  CAS  Google Scholar 

  475. Tak, Y.; Hong, S. J.; Lee, J. S.; Yong, K. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 2009, 19, 5945–5951.

    Article  CAS  Google Scholar 

  476. Consonni, V.; Rey, G.; Bonaime, J.; Karst, N.; Doisneau, B.; Roussel, H.; Renet, S.; Bellet, D. Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods. Appl. Phys. Lett. 2011, 98, 111906.

    Article  CAS  Google Scholar 

  477. Sun, X. W.; Chen, J.; Song, J. L.; Zhao, D. W.; Deng, W. Q.; Lei, W. Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode. Opt. Express 2010, 18, 1296–1301.

    Article  CAS  Google Scholar 

  478. Cui, J.; Gibson, U. J. A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells. J. Phys. Chem. C 2010, 114, 6408–6412.

    Article  CAS  Google Scholar 

  479. Zhao, Q. D.; Xie, T. F.; Peng, L. L.; Lin, Y. H.; Wang, P.; Peng, L.; Wang, D. J. Size- and orientation-dependent photovoltaic properties of ZnO nanorods. J. Phys. Chem. C 2007, 111, 17136–17145.

    Article  CAS  Google Scholar 

  480. Tena-Zaera, R.; Ryan, M. A.; Katty, A.; Hodes, G.; Bastide, S.; Lévy-Clément, C. Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell. C.R. Chim. 2006, 9, 717–729.

    Article  CAS  Google Scholar 

  481. Olson, D. C.; Piris, J.; Collins, R. T.; Shaheen, S. E.; Ginley, D. S. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 2006, 496, 26–29.

    Article  CAS  Google Scholar 

  482. Takanezawa, K.; Tajima, K.; Hashimoto, K. Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer. Appl. Phys. Lett. 2008, 93, 063308.

    Article  CAS  Google Scholar 

  483. Unalan, H. E.; Hiralal, P.; Kuo, D.; Parekh, B.; Amaratunga, G.; Chhowalla, M. Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films. J. Mater. Chem. 2008, 18, 5909–5912.

    Article  CAS  Google Scholar 

  484. Liu, J.; Wang, S.; Bian, Z.; Shan, M.; Huang, C. Organic/ inorganic hybrid solar cells with vertically oriented ZnO nanowires. Appl. Phys. Lett. 2009, 94, 173107.

    Article  CAS  Google Scholar 

  485. Takanezawa, K.; Hirota, K.; Wei, Q. S.; Tajima, K.; Hashimoto, K. Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices. J. Phys. Chem. C 2007, 111, 7218–7223.

    Article  CAS  Google Scholar 

  486. Briseno, A. L.; Holcombe, T. W.; Boukai, A. I.; Garnett, E. C.; Shelton, S. W.; Frechet, J. J. M.; Yang, P. D. Oligoand polythiophene/ZnO hybrid nanowire solar cells. Nano Lett. 2010, 10, 334–340.

    Article  CAS  Google Scholar 

  487. Ravirajan, P.; Peiró, A. M.; Nazeeruddin, M. K.; Graetzel, M.; Bradley, D. D. C.; Durrant, J. R.; Nelson, J. Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. B 2006, 110, 7635–7639.

    Article  CAS  Google Scholar 

  488. Bi, D. Q.; Wu, F.; Qu, Q. Y.; Yue, W. J.; Cui, Q.; Shen, W.; Chen, R. Q.; Liu, C. W.; Qiu, Z. L.; Wang, M. T. Device performance related to amphiphilic modification at charge separation interface in hybrid solar cells with vertically aligned ZnO nanorod arrays. J. Phys. Chem. C 2011, 115, 3745–3752.

    Article  CAS  Google Scholar 

  489. Olson, D. C.; Lee, Y. J.; White, M. S.; Kopidakis, N.; Shaheen, S. E.; Ginley, D. S.; Voigt, J. A.; Hsu, J. W. P. Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices. J. Phys. Chem. C 2007, 111, 16640–16645.

    Article  CAS  Google Scholar 

  490. Olson, D. C.; Shaheen, S. E.; Collins, R. T.; Ginley, D. S. The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices. J. Phys. Chem. C 2007, 111, 16670–16678.

    Article  CAS  Google Scholar 

  491. Peiro, A. M.; Ravirajan, P.; Govender, K.; Boyle, D. S.; O’Brien, P.; Bradley, D. D. C.; Nelson, J.; Durrant, J. R. Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J. Mater. Chem. 2006, 16, 2088–2096.

    Article  CAS  Google Scholar 

  492. Lin, Y. Y.; Chen, C. W.; Chu, T. H.; Su, W. F.; Lin, C. C.; Ku, C. H.; Wu, J. J.; Chen, C. H. Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes. J. Mater. Chem. 2007, 17, 4571–4576.

    Article  CAS  Google Scholar 

  493. Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D. ZnOTiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C 2007, 111, 18451–18456.

    Article  CAS  Google Scholar 

  494. Liu, J. P.; Qu, S. C.; Xu, Y.; Chen, Y. H.; Zeng, X. B.; Wang, Z. J.; Zhou, H. Y.; Wang, Z. G. Photovoltaic and electroluminescence characters in hybrid ZnO and conjugated polymer bulk heterojunction devices. Chin. Phys. Lett. 2007, 24, 1350–1353.

    Article  CAS  Google Scholar 

  495. Wang, Z. L. Self-powered nanotech—Nanosize machines need still tinier power plants. Sci. Am. 2008, 298, 82–87.

    Article  Google Scholar 

  496. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–890.

    Article  CAS  Google Scholar 

  497. Pan, C. F.; Wu, H.; Wang, C.; Wang, B.; Zhang, L.; Cheng, Z. D.; Hu, P.; Pan, W.; Zhou, Z. Y.; Yang, X.; Zhu, J. Nanowire-based high performance “micro fuel cell”: One nanowire, one fuel cell. Adv. Mater. 2008, 20, 1644–1648.

    Article  CAS  Google Scholar 

  498. Hudak, N. S.; Amatucci, G. G. Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J. Appl. Phys. 2008, 103, 101301.

    Article  CAS  Google Scholar 

  499. Choi, M. Y.; Choi, D.; Jin, M. J.; Kim, I.; Kim, S. H.; Choi, J. Y.; Lee, S. Y.; Kim, J. M.; Kim, S. W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 2009, 21, 2185–2189.

    Article  CAS  Google Scholar 

  500. Lei, Y.; Jiao, Z.; Wu, M. H.; Wilde, G. Ordered arrays of nanostructures and applications in high-efficient nanogenerators. Adv. Eng. Mater. 2007, 9, 343–348.

    Article  CAS  Google Scholar 

  501. Su, W. S.; Chen, Y. F.; Hsiao, C. L.; Tu, L. W. Generation of electricity in GaN nanorods induced by piezoelectric effect. Appl. Phys. Lett. 2007, 90, 063110.

    Article  CAS  Google Scholar 

  502. Lu, M. T.; Song, J. H.; Lu, M. P.; Lee, C. Y.; Chen, L. J.; Wang, Z. L. ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 2009, 3, 357–362.

    Article  CAS  Google Scholar 

  503. Huang, C. T.; Song, J. H.; Lee, W. F.; Ding, Y.; Gao, Z. Y.; Hao, Y.; Chen, L. J.; Wang, Z. L. GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 2010, 132, 4766–4771.

    Article  CAS  Google Scholar 

  504. Huang, C. T.; Song, J. H.; Tsai, C. M.; Lee, W. F.; Lien, D. H.; Gao, Z. Y.; Hao, Y.; Chen, L. J.; Wang, Z. L. Single-InN-nanowire nanogenerator with up to 1 V output voltage. Adv. Mater. 2010, 22, 4008–4013.

    Article  CAS  Google Scholar 

  505. Wang, X. B.; Song, J. H.; Zhang, F.; He, C. Y.; Hu, Z.; Wang, Z. L. Electricity generation based on one-dimensional group-III nitride nanomaterials. Adv. Mater. 2010, 22, 2155–2158.

    Article  CAS  Google Scholar 

  506. Lin, Y. F.; Song, J.; Ding, Y.; Lu, S. Y.; Wang, Z. L. Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect. Adv. Mater. 2008, 20, 3127–3130.

    Article  CAS  Google Scholar 

  507. Lu, M. Y.; Song, J. H.; Lu, M. P.; Lee, C. Y.; Chen, L. J.; Wang, Z. L. ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 2009, 3, 357–362.

    Article  CAS  Google Scholar 

  508. Chen, X.; Xu, S.; Yao, N.; Shi, Y. 1.6 V Nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 2010, 10, 2133–2137.

    Article  CAS  Google Scholar 

  509. Qi, Y.; Jafferis, N. T.; Lyons, K.; Lee, C. M.; Ahmad, H.; McAlpine, M. C. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 2010, 10, 524–528.

    Article  CAS  Google Scholar 

  510. Qi, Y.; McAlpine, M. C. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 2010, 3, 1275–1285.

    Article  CAS  Google Scholar 

  511. Feng, X.; Yang, B. D.; Liu, Y. M.; Wang, Y.; Dagdeviren, C.; Liu, Z. J.; Carlson, A.; Li, J. Y.; Huang, Y. G.; Rogers, J. A. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano 2011, 5, 3326–3332.

    Article  CAS  Google Scholar 

  512. Lee, M. H.; Javey, A. Power surfing on waves. Nature 2011, 472, 304–305.

    Article  CAS  Google Scholar 

  513. Qi, Y.; Kim, J.; Nguyen, T. D.; Lisko, B.; Purohit, P. K.; McAlpine, M. C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 2011, 11, 1331–1336.

    Article  CAS  Google Scholar 

  514. Xu, S. Y.; Shi, Y. Power generation from piezoelectric lead zirconate titanate nanotubes. J. Phys. D: Appl. Phys. 2009, 42, 085301.

    Article  CAS  Google Scholar 

  515. Xu, S.; Hansen, B. J.; Wang, Z. L. Piezoelectric-nanowireenabled power source for driving wireless microelectronics. Nat. Commun. 2010, 1, 93.

    Article  CAS  Google Scholar 

  516. Wang, Z. Y.; Hu, J.; Suryavanshi, A. P.; Yum, K.; Yu, M. F. Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett. 2007, 7, 2966–2969.

    Article  CAS  Google Scholar 

  517. Ke, T. Y.; Chen, H. A.; Sheu, H. S.; Yeh, J. W.; Lin, H. N.; Lee, C. Y.; Chiu, H. T. Sodium niobate nanowire and its piezoelectricity. J. Phys. Chem. C 2008, 112, 8827–8831.

    Article  CAS  Google Scholar 

  518. Chang, C.; Tran, V. H.; Wang, J.; Fuh, Y. K.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

    Article  CAS  Google Scholar 

  519. Hansen, B. J.; Liu, Y.; Yang, R. S.; Wang, Z. L. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 2010, 4, 3647–3652.

    Article  CAS  Google Scholar 

  520. Service, R. F. Nanogenerators tap waste energy to power ultrasmall electronics. Science 2010, 328, 304–305.

    Article  CAS  Google Scholar 

  521. Wang, Z. L. Piezoelectric nanostructures: From growth phenomena to electric nanogenerators. MRS Bull. 2007, 32, 109–116.

    Article  Google Scholar 

  522. Zhao, M. H.; Wang, Z. L.; Mao, S. X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 2004, 4, 587–590.

    Article  CAS  Google Scholar 

  523. Mitrushchenkov, A.; Linguerri, R.; Charnbaud, G. Piezoelectric properties of AlN, ZnO, and HgxZn1−x O nanowires by first-principles calculations. J. Phys. Chem. C 2009, 113, 6883–6886.

    Article  CAS  Google Scholar 

  524. Xiang, H. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Piezoelectricity in ZnO nanowires: A first-principles study. Appl. Phys. Lett. 2006, 89, 223111.

    Article  CAS  Google Scholar 

  525. Xin, J.; Zheng, Y.; Shi, E. Piezoelectricity of zinc-blende and wurtzite structure binary compounds. Appl. Phys. Lett. 2007, 91, 112902.

    Article  CAS  Google Scholar 

  526. grawal, R.; Espinosa, H. D. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 2011, 11, 786–790.

    Article  CAS  Google Scholar 

  527. Gao, Y.; Wang, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 2007, 7, 2499–2505.

    Article  CAS  Google Scholar 

  528. Scrymgeour, D. A.; Hsu, J. W. P. Correlated piezoelectric and electrical properties in individual ZnO nanorods. Nano Lett. 2008, 8, 2204–2209.

    Article  CAS  Google Scholar 

  529. Gao, Y.; Wang, Z. L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 2009, 9, 1103–1110.

    Article  CAS  Google Scholar 

  530. Mora-Sero, I.; Fabregat-Santiago, F.; Denier, B.; Bisquert, J.; Tena-Zaera, R.; Elias, J.; Levy-Clement, C. Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl. Phys. Lett. 2006, 89, 203117.

    Article  CAS  Google Scholar 

  531. Tong, H.; Wang, B. L.; Ou-Yang, Z. C. Electric potential generated in ZnO nanowire due to piezoelectric effect. Thin Solid Films 2008, 516, 2708–2710.

    Article  CAS  Google Scholar 

  532. Allen, M. W.; Alkaisi, M. M.; Durbin, S. M. Metal Schottky diodes on Zn-polar and O-polar bulk ZnO. Appl. Phys. Lett. 2006, 89, 103520.

    Article  CAS  Google Scholar 

  533. Coppa, B. J.; Davis, R. F.; Nemanich, R. J. Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000\(\bar 1\)). Appl. Phys. Lett. 2003, 82, 400–402.

    Article  CAS  Google Scholar 

  534. Wenckstern, H. V.; Kaidashev, E. M.; Lorenz, M.; Hochmuth, H.; Biehne, G.; Lenzner, J.; Gottschalch, V.; Pickenhain, R.; Grundmann, M. Lateral homogeneity of Schottky contacts on n-type ZnO. Appl. Phys. Lett. 2004, 84, 79–81.

    Article  CAS  Google Scholar 

  535. Kim, S. H.; Kim, H. K.; Seong, T. Y. Effect of hydrogen peroxide treatment on the characteristics of Pt Schottky contact on n-type ZnO. Appl. Phys. Lett. 2005, 86, 112101.

    Article  CAS  Google Scholar 

  536. Rakhshani, A. E. Schottky diodes on ZnO rods grown homoepitaxially by successive chemical solution deposition. Semicond. Sci. Technol. 2008, 23, 075037.

    Article  CAS  Google Scholar 

  537. Periasamy, C.; Chakrabarti, P. Time-dependent degradation of Pt/ZnO nanoneedle rectifying contact based piezoelectric nanogenerator. J. Appl. Phys. 2011, 109, 054306.

    Article  CAS  Google Scholar 

  538. Song, J. H.; Xie, H. Z.; Wu, W. Z.; Joseph, V. R.; Wu, C. F. J.; Wang, Z. L. Robust optimization of the output voltage of nanogenerators by statistical design of experiments. Nano Res. 2010, 3, 613–619.

    Article  CAS  Google Scholar 

  539. Shao, Z. Z.; Wen, L. Y.; Wu, D. M.; Zhang, X. A.; Chang, S. L.; Qin, S. Q. AFM analysis of piezoelectric nanogenerator based on n +-diamond/n-ZnO heterojunction. Appl. Surf. Sci. 2011, 257, 4919–4922.

    Article  CAS  Google Scholar 

  540. Riaz, M.; Fulati, A.; Amin, G.; Alvi, N. H.; Nur, O.; Willander, M. Buckling and elastic stability of vertical ZnO nanotubes and nanorods. J. Appl. Phys. 2009, 106, 034309.

    Article  CAS  Google Scholar 

  541. Liu, J.; Fei, P.; Zhou, J.; Tummala, R.; Wang, Z. L. Toward high output-power nanogenerator. Appl. Phys. Lett. 2008, 92, 173105.

    Article  CAS  Google Scholar 

  542. Thundat, T. Flexible approach pays off. Nat.Nanotechnol. 2008, 3, 133–134.

    Article  CAS  Google Scholar 

  543. Zhang, J.; Li, M. K.; Yu, L. Y.; Liu, L. L.; Zhang, H.; Yang, Z. Synthesis and piezoelectric properties of well-aligned ZnO nanowire arrays via a simple solution-phase approach. Appl. Phys. A 2009, 97, 869–876.

    Article  CAS  Google Scholar 

  544. Park, H. K.; Lee, K. Y.; Seo, J. S.; Jeong, J. A.; Kim, H. K.; Choi, D.; Kim, S. W. Charge-generating mode control in high-performance transparent flexible piezoelectric nanogenerators. Adv. Funct. Mater. 2011, 21, 1187–1193.

    Article  CAS  Google Scholar 

  545. Choi, D.; Choi, M. Y.; Shin, H. J.; Yoon, S. M.; Seo, J. S.; Choi, J. Y.; Lee, S. Y.; Kim, J. M.; Kim, S. W. Nanoscale networked single-walled carbon-nanotube electrodes for transparent flexible nanogenerators. J. Phys. Chem. C 2010, 114, 1379–1384.

    Article  CAS  Google Scholar 

  546. Choi, D.; Choi, M. Y.; Choi, W. M.; Shin, H. J.; Park, H. K.; Seo, J. S.; Park, J.; Yoon, S. M.; Chae, S. J.; Lee, Y. H.; Kim, S. W.; Choi, J. Y.; Lee, S. Y.; Kim, J. M. Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 2010, 22, 2187–2192.

    Article  CAS  Google Scholar 

  547. Shin, H. J.; Choi, W. M.; Choi, D.; Han, G. H.; Yoon, S. M.; Park, H. K.; Kim, S. W.; Jin, Y. W.; Lee, S. Y.; Kim, J. M.; Choi, J. Y.; Lee, Y. H. Control of electronic structure of graphene by various sopants and their effects on a nanogenerator. J. Am. Chem. Soc. 2010, 132, 15603–15609.

    Article  CAS  Google Scholar 

  548. Kumar, B.; Lee, K. Y.; Park, H. K.; Chae, S. J.; Lee, Y. H.; Kim, S. W. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 2011, 5, 4197–4204.

    Article  CAS  Google Scholar 

  549. Yang, R. S.; Qin, Y.; Li, C.; Dai, L. M.; Wang, Z. L. Characteristics of output voltage and current of integrated nanogenerators. Appl. Phys. Lett. 2009, 94, 022905.

    Article  CAS  Google Scholar 

  550. Yang, R.; Qin, Y.; Li, C.; Zhu, G.; Wang, Z. L. Converting biomechanical energy into electricity by a muscle-movementdriven nanogenerator. Nano Lett. 2009, 9, 1201–1205.

    Article  CAS  Google Scholar 

  551. Li, Z.; Zhu, G.; Yang, R. S.; Wang, A. C.; Wang, Z. L. Muscle-driven in vivo nanogenerator. Adv. Mater. 2010, 22, 2534–2537.

    Article  CAS  Google Scholar 

  552. Zhu, G.; Yang, R. S.; Wang, S. H.; Wang, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151–3155.

    Article  CAS  Google Scholar 

  553. Agrawal, R.; Peng, B.; Espinosa, H. D. Experimental-computational investigation of ZnO nanowires strength and fracture. Nano Lett. 2009, 9, 4177–4183.

    Article  CAS  Google Scholar 

  554. Yu, A. F.; Li, H. Y.; Tang, H. Y.; Liu, T. J.; Jiang, P.; Wang, Z. L. Vertically integrated nanogenerator based on ZnO nanowire arrays. Phys. Status Solidi R 2011, 5, 162–164.

    Article  CAS  Google Scholar 

  555. van der Heyden, F. H. J.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 2007, 7, 1022–1025.

    Article  CAS  Google Scholar 

  556. Hu, Y.; Zhang, Y.; Xu, C.; Lin, L.; Snyder, R. L.; Wang, Z. L. Self-powered system with wireless data transmission. Nano Lett. 2011, 11, 2572–2577.

    Article  CAS  Google Scholar 

  557. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2 Science 2002, 297, 2243–2245.

    Article  CAS  Google Scholar 

  558. Chen, H.; Chen, C.; Chang, Y. C.; Tsai, C. W.; Liu, R. S.; Hu, S. F.; Chang, W. S.; Chen, K. H. Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: True efficiency for water splitting. Angew. Chem. Int. Ed. 2010, 49, 5966–5969.

    CAS  Google Scholar 

  559. Wang, G. M.; Yang, X. Y.; Qian, F.; Zhang, J. Z.; Li, Y. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 2010, 10, 1088–1092.

    Article  CAS  Google Scholar 

  560. Wang, X. W.; Liu, G.; Lu, G. Q.; Cheng, H. M. Stable photocatalytic hydrogen evolution from water over ZnO-CdS core-shell nanorods. Int. J. Hydrogen Energy 2010, 35, 8199–8205.

    Article  CAS  Google Scholar 

  561. Hong, K. S.; Xu, H. F.; Konishi, H.; Li, X. C. Direct water splitting through vibrating piezoelectric microfibers in water. J. Phys. Chem. Lett. 2010, 1, 997–1002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Wang, Z.L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 4, 1013–1098 (2011). https://doi.org/10.1007/s12274-011-0160-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0160-7

Keywords

Navigation