Skip to main content

Advertisement

Log in

Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer’s disease

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder. The pathology of AD includes amyloid-β (Aβ) deposits in neuritic plaques and neurofibrillary tangles composed of hyperphosphorylated tau, as well as neuronal loss in specific brain regions. Increasing epidemiological and functional neuroimaging evidence indicates that global and regional disruptions in brain metabolism are involved in the pathogenesis of this disease. Aβ precursor protein is cleaved to produce both extracellular and intracellular Aβ, accumulation of which might interfere with the homeostasis of cellular metabolism. Mitochondria are highly dynamic organelles that not only supply the main energy to the cell but also regulate apoptosis. Mitochondrial dysfunction might contribute to Aβ neurotoxicity. In this review, we summarize the pathways of Aβ generation and its potential neurotoxic effects on cellular metabolism and mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang HC, Jiang ZF. Amyloid-beta protein precursor family members: a review from homology to biological function. J Alzheimers Dis 2011, 26: 607–626.

    PubMed  CAS  Google Scholar 

  2. Huang HC, Jiang ZF. Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis 2009, 16: 15–27.

    PubMed  CAS  Google Scholar 

  3. Kapogiannis D, Mattson MP. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 2011, 10: 187–198.

    Article  PubMed  CAS  Google Scholar 

  4. Sultana R, Mecocci P, Mangialasche F, Cecchetti R, Baglioni M, Butterfield DA. Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with Alzheimer’s disease: insights into the role of oxidative stress in Alzheimer’s disease and initial investigations into a potential biomarker for this dementing disorder. J Alzheimers Dis 2011, 24: 77–84.

    PubMed  CAS  Google Scholar 

  5. Ishii K, Sasaki M, Kitagaki H, Yamaji S, Sakamoto S, Matsuda K, et al. Reduction of cerebellar glucose metabolism in advanced Alzheimer’s disease. J Nucl Med 1997, 38: 925–928.

    PubMed  CAS  Google Scholar 

  6. Kennedy AM, Frackowiak RS, Newman SK, Bloomfield PM, Seaward J, Roques P, et al. Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease. Neurosci Lett 1995, 186: 17–20.

    Article  PubMed  CAS  Google Scholar 

  7. Furst AJ, Lal RA. Amyloid-beta and glucose metabolism in Alzheimer’s disease. J Alzheimers Dis 2011, 26(Suppl 3): 105–116.

    PubMed  Google Scholar 

  8. Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 2004, 490: 115–125.

    Article  PubMed  CAS  Google Scholar 

  9. Young-Collier KJ, McArdle M, Bennett JP. The dying of the light: mitochondrial failure in Alzheimer’s disease. J Alzheimers Dis 2012, 28: 771–781.

    PubMed  CAS  Google Scholar 

  10. Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 2008, 105: 4441–4446.

    Article  PubMed  CAS  Google Scholar 

  11. Selfridge JE, E L, Lu J, Swerdlow RH. Role of mitochondrial homeostasis and dynamics in Alzheimer’s disease. Neurobiol Dis 2012, doi:10.1016/j.nbd.2011.12.057.

  12. Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 2012, 120: 419–429.

    Article  PubMed  CAS  Google Scholar 

  13. Carey RM, Balcz BA, Lopez-Coviella I, Slack BE. Inhibition of dynamin-dependent endocytosis increases shedding of the amyloid precursor protein ectodomain and reduces generation of amyloid beta protein. BMC Cell Biol 2005, 6: 30.

    Article  PubMed  Google Scholar 

  14. Koo EH, Squazzo SL, Selkoe DJ, Koo CH. Trafficking of cell surface amyloid beta-protein precursor. I. Secretion, endocytosis and recycling as detected by labeled monoclonal antibody. J Cell Sci 1996, 109(Pt 5): 991–998.

    PubMed  CAS  Google Scholar 

  15. Yamazaki T, Koo EH, Selkoe DJ. Trafficking of cell-surface amyloid beta-protein precursor. II. Endocytosis, recycling and lysosomal targeting detected by immunolocalization. J Cell Sci 1996, 109(Pt 5): 999–1008.

    PubMed  CAS  Google Scholar 

  16. Pasternak SH, Bagshaw RD, Guiral M, Zhang S, Ackerley CA, Pak BJ, et al. Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J Biol Chem 2003, 278: 26687–26694.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Mol Brain 2011, 4: 3.

    Article  PubMed  CAS  Google Scholar 

  18. Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F, et al. Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides. Proc Natl Acad Sci U S A 1999, 96: 742–747.

    Article  PubMed  CAS  Google Scholar 

  19. Annaert WG, Levesque L, Craessaerts K, Dierinck I, Snellings G, Westaway D, et al. Presenilin 1 controls gamma-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J Cell Biol 1999, 147: 277–294.

    Article  PubMed  CAS  Google Scholar 

  20. Verdier Y, Zarandi M, Penke B. Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. J Pept Sci 2004, 10: 229–248.

    Article  PubMed  CAS  Google Scholar 

  21. Caltagarone J, Jing Z, Bowser R. Focal adhesions regulate Abeta signaling and cell death in Alzheimer’s disease. Biochim Biophys Acta 2007, 1772: 438–445.

    Article  PubMed  CAS  Google Scholar 

  22. Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, et al. Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 2000, 156: 15–20.

    Article  PubMed  CAS  Google Scholar 

  23. Kaminski Schierle GS, van de Linde S, Erdelyi M, Esbjorner EK, Klein T, Rees E, et al. In situ measurements of the formation and morphology of intracellular beta-amyloid fibrils by super-resolution fluorescence imaging. J Am Chem Soc 2011, 133: 12902–12905.

    Article  PubMed  CAS  Google Scholar 

  24. Gyure KA, Durham R, Stewart WF, Smialek JE, Troncoso JC. Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 2001, 125: 489–492.

    PubMed  CAS  Google Scholar 

  25. Knobloch M, Konietzko U, Krebs DC, Nitsch RM. Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice. Neurobiol Aging 2007, 28: 1297–1306.

    Article  PubMed  CAS  Google Scholar 

  26. Mohamed A, Posse de Chaves E. Abeta internalization by neurons and glia. Int J Alzheimers Dis 2011, 2011: 127984.

    PubMed  Google Scholar 

  27. Tampellini D, Rahman N, Lin MT, Capetillo-Zarate E, Gouras GK. Impaired beta-amyloid secretion in Alzheimer’s disease pathogenesis. J Neurosci 2011, 31: 15384–15390.

    Article  PubMed  CAS  Google Scholar 

  28. Tampellini D, Rahman N, Gallo EF, Huang Z, Dumont M, Capetillo-Zarate E, et al. Synaptic activity reduces intraneuronal Abeta, promotes APP transport to synapses, and protects against Abeta-related synaptic alterations. J Neurosci 2009, 29: 9704–9713.

    Article  PubMed  CAS  Google Scholar 

  29. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003, 39: 409–421.

    Article  PubMed  CAS  Google Scholar 

  30. Bayer TA, Wirths O. Intracellular accumulation of amyloid-Beta-a predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. Front Aging Neurosci 2010, 2: 8.

    PubMed  CAS  Google Scholar 

  31. Langui D, Girardot N, El Hachimi KH, Allinquant B, Blanchard V, Pradier L, et al. Subcellular topography of neuronal Abeta peptide in APPxPS1 transgenic mice. Am J Pathol 2004, 165: 1465–1477.

    Article  PubMed  CAS  Google Scholar 

  32. Borger E, Aitken L, Muirhead KE, Allen ZE, Ainge JA, Conway SJ, et al. Mitochondrial beta-amyloid in Alzheimer’s disease. Biochem Soc Trans 2011, 39: 868–873.

    Article  PubMed  CAS  Google Scholar 

  33. Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 2008, 14: 45–53.

    Article  PubMed  CAS  Google Scholar 

  34. Yan SD, Fu J, Soto C, Chen X, Zhu H, Al-Mohanna F, et al. An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 1997, 389: 689–695.

    Article  PubMed  CAS  Google Scholar 

  35. Oppermann UC, Salim S, Tjernberg LO, Terenius L, Jornvall H. Binding of amyloid beta-peptide to mitochondrial hydroxyacyl-CoA dehydrogenase (ERAB): regulation of an SDR enzyme activity with implications for apoptosis in Alzheimer’s disease. FEBS Lett 1999, 451: 238–242.

    Article  PubMed  CAS  Google Scholar 

  36. Yan SD, Stern DM. Mitochondrial dysfunction and Alzheimer’s disease: role of amyloid-beta peptide alcohol dehydrogenase (ABAD). Int J Exp Pathol 2005, 86: 161–171.

    Article  PubMed  CAS  Google Scholar 

  37. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 2004, 304: 448–452.

    Article  PubMed  CAS  Google Scholar 

  38. Yao J, Du H, Yan S, Fang F, Wang C, Lue LF, et al. Inhibition of amyloid-beta (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer’s disease. J Neurosci 2011, 31: 2313–2320.

    Article  PubMed  CAS  Google Scholar 

  39. Lee HP, Pancholi N, Esposito L, Previll LA, Wang X, Zhu X, et al. Early induction of oxidative stress in mouse model of Alzheimer disease with reduced mitochondrial superoxide dismutase activity. PLoS One 2012, 7: e28033.

    Article  PubMed  CAS  Google Scholar 

  40. Mao P, Reddy PH. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: implications for early intervention and therapeutics. Biochim Biophys Acta 2011, 1812: 1359–1370.

    Article  PubMed  CAS  Google Scholar 

  41. Butterfield DA, Bader Lange ML, Sultana R. Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochim Biophys Acta 2010, 1801: 924–929.

    Article  PubMed  CAS  Google Scholar 

  42. Grimm S, Hoehn A, Davies KJ, Grune T. Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res 2011, 45: 73–88.

    Article  PubMed  CAS  Google Scholar 

  43. Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, et al. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging 2011, 32: 763–777.

    Article  PubMed  CAS  Google Scholar 

  44. Williams TI, Lynn BC, Markesbery WR, Lovell MA. Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer’s disease. Neurobiol Aging 2006, 27: 1094–1099.

    Article  PubMed  CAS  Google Scholar 

  45. Bradley MA, Markesbery WR, Lovell MA. Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 2010, 48: 1570–1576.

    Article  PubMed  CAS  Google Scholar 

  46. McGarth LT, McGleenon BM, Brennan S, McColl D, McIlroy S, Passmore AP. Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM 2001, 94: 485–490.

    Article  Google Scholar 

  47. Nam DT, Arseneault M, Murthy V, Ramassamy C. Potential role of acrolein in neurodegeneration and in Alzheimer’s disease. Curr Mol Pharmacol 2010, 3: 66–78.

    Article  CAS  Google Scholar 

  48. Perluigi M, Sultana R, Cenini G, Di Domenico F, Memo M, Pierce WM, et al. Redox proteomics identification of 4-hydroxynonenalmodified brain proteins in Alzheimer’s disease: Role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clin Appl 2009, 3: 682–693.

    Article  PubMed  CAS  Google Scholar 

  49. Mark RJ, Pang Z, Geddes JW, Uchida K, Mattson MP. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci 1997, 17: 1046–1054.

    PubMed  CAS  Google Scholar 

  50. Gwon AR, Park JS, Arumugam TV, Kwon YK, Chan SL, Kim SH, et al. Oxidative lipid modification of nicastrin enhances amyloidogenic gamma-secretase activity in Alzheimer’s disease. Aging Cell 2012, doi: 10.1111/j.1474-9726.2012.00817.x.

  51. Pocernich CB, Butterfield DA. Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer’s disease. Neurotox Res 2003, 5: 515–520.

    Article  PubMed  Google Scholar 

  52. Lovell MA, Markesbery WR. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res 2007, 35: 7497–7504.

    Article  PubMed  CAS  Google Scholar 

  53. Jacobsen E, Beach T, Shen Y, Li R, Chang Y. Deficiency of the Mre11 DNA repair complex in Alzheimer’s disease brains. Brain Res Mol Brain Res 2004, 128: 1–7.

    Article  PubMed  CAS  Google Scholar 

  54. Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 2005, 93: 953–962.

    Article  PubMed  CAS  Google Scholar 

  55. Baloyannis SJ. Mitochondria are related to synaptic pathology in Alzheimer’s disease. Int J Alzheimers Dis 2011, 2011: 305395.

    PubMed  Google Scholar 

  56. de la Monte SM, Luong T, Neely TR, Robinson D, Wands JR. Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Lab Invest 2000, 80: 1323–1335.

    Article  PubMed  Google Scholar 

  57. Mayer B, Oberbauer R. Mitochondrial regulation of apoptosis. News Physiol Sci 2003, 18: 89–94.

    PubMed  CAS  Google Scholar 

  58. Karbowski M. Mitochondria on guard: role of mitochondrial fusion and fission in the regulation of apoptosis. Adv Exp Med Biol 2010, 687: 131–142.

    Article  PubMed  CAS  Google Scholar 

  59. Soriano ME, Scorrano L. The interplay between BCL-2 family proteins and mitochondrial morphology in the regulation of apoptosis. Adv Exp Med Biol 2010, 687: 97–114.

    Article  PubMed  CAS  Google Scholar 

  60. Kasanuki K, Iseki E, Fujishiro H, Yamamoto R, Higashi S, Minegishi M, et al. Neuropathological investigation of the hypometabolic regions on positron emission tomography with [18F]_fluorodeoxyglucose in patients with dementia with Lewy bodies. J Neurol Sci 2012, 314: 111–119.

    Article  PubMed  CAS  Google Scholar 

  61. Salek RM, Xia J, Innes A, Sweatman BC, Adalbert R, Randle S, et al. A metabolomic study of the CRND8 transgenic mouse model of Alzheimer’s disease. Neurochem Int 2010, 56: 937–947.

    Article  PubMed  CAS  Google Scholar 

  62. Yates CM, Butterworth J, Tennant MC, Gordon A. Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimertype and other dementias. J Neurochem 1990, 55: 1624–1630.

    Article  PubMed  CAS  Google Scholar 

  63. Xiang Y, Xu G, Weigel-Van Aken KA. Lactic acid induces aberrant amyloid precursor protein processing by promoting its interaction with endoplasmic reticulum chaperone proteins. PLoS One 2010, 5: e13820.

    Article  PubMed  Google Scholar 

  64. Stubbs M, Veech RL, Krebs HA. Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm. Biochem J 1972, 126: 59–65.

    PubMed  CAS  Google Scholar 

  65. Zhang Q, Piston DW, Goodman RH. Regulation of corepressor function by nuclear NADH. Science 2002, 295: 1895–1897.

    PubMed  CAS  Google Scholar 

  66. McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 2006, 71: 399–407.

    Article  PubMed  CAS  Google Scholar 

  67. Huang HC, Xu K, Jiang ZF. Curcumin-mediated neuroprotection against amyloid-beta-induced mitochondrial dysfunction involves the inhibition of GSK-3beta. J Alzheimers Dis 2012, doi: 10.3233/JAD-2012-120688.

  68. Yang Y, Turner RS, Gaut JR. The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases Abeta40 and Abeta42 secretion. J Biol Chem 1998, 273: 25552–25555.

    Article  PubMed  CAS  Google Scholar 

  69. Kudo T, Okumura M, Imaizumi K, Araki W, Morihara T, Tanimukai H, et al. Altered localization of amyloid precursor protein under endoplasmic reticulum stress. Biochem Biophys Res Commun 2006, 344: 525–530.

    Article  PubMed  CAS  Google Scholar 

  70. Sirover MA. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1999, 1432: 159–184.

    Article  PubMed  CAS  Google Scholar 

  71. Harada N, Yasunaga R, Higashimura Y, Yamaji R, Fujimoto K, Moss J, et al. Glyceraldehyde-3-phosphate dehydrogenase enhances transcriptional activity of androgen receptor in prostate cancer cells. J Biol Chem 2007, 282: 22651–22661.

    Article  PubMed  CAS  Google Scholar 

  72. Tarze A, Deniaud A, Le Bras M, Maillier E, Molle D, Larochette N, et al. GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene 2007, 26: 2606–2620.

    Article  PubMed  CAS  Google Scholar 

  73. Tisdale EJ. Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway. J Biol Chem 2001, 276: 2480–2486.

    Article  PubMed  CAS  Google Scholar 

  74. Butterfield DA, Hardas SS, Lange ML. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: many pathways to neurodegeneration. J Alzheimers Dis 2010, 20: 369–393.

    PubMed  CAS  Google Scholar 

  75. Shalova IN, Cechalova K, Rehakova Z, Dimitrova P, Ognibene E, Caprioli A, et al. Decrease of dehydrogenase activity of cerebral glyceraldehyde-3-phosphate dehydrogenase in different animal models of Alzheimer’s disease. Biochim Biophys Acta 2007, 1770: 826–832.

    Article  PubMed  CAS  Google Scholar 

  76. Cumming RC, Schubert D. Amyloid-beta induces disulfide bonding and aggregation of GAPDH in Alzheimer’s disease. FASEB J 2005, 19: 2060–2062.

    PubMed  CAS  Google Scholar 

  77. Wang Q, Woltjer RL, Cimino PJ, Pan C, Montine KS, Zhang J, et al. Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein. FASEB J 2005, 19: 869–871.

    Article  PubMed  CAS  Google Scholar 

  78. Schulze H, Schuler A, Stuber D, Dobeli H, Langen H, Huber G. Rat brain glyceraldehyde-3-phosphate dehydrogenase interacts with the recombinant cytoplasmic domain of Alzheimer’s beta-amyloid precursor protein. J Neurochem 1993, 60: 1915–1922.

    Article  PubMed  CAS  Google Scholar 

  79. Naletova I, Schmalhausen E, Kharitonov A, Katrukha A, Saso L, Caprioli A, et al. Non-native glyceraldehyde-3-phosphate dehydrogenase can be an intrinsic component of amyloid structures. Biochim Biophys Acta 2008, 1784: 2052–2058.

    Article  PubMed  CAS  Google Scholar 

  80. Parker WD Jr, Parks J, Filley CM, Kleinschmidt-DeMasters BK. Electron transport chain defects in Alzheimer’s disease brain. Neurology 1994, 44: 1090–1096.

    Article  PubMed  Google Scholar 

  81. Fukuyama R, Hatanpaa K, Rapoport SI, Chandrasekaran K. Gene expression of ND4, a subunit of complex I of oxidative phosphorylation in mitochondria, is decreased in temporal cortex of brains of Alzheimer’s disease patients. Brain Res 1996, 713: 290–293.

    Article  PubMed  CAS  Google Scholar 

  82. Manczak M, Park BS, Jung Y, Reddy PH. Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med 2004, 5: 147–162.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Feng Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, XM., Huang, HC. & Jiang, ZF. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer’s disease. Neurosci. Bull. 28, 631–640 (2012). https://doi.org/10.1007/s12264-012-1270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1270-2

Keywords

Navigation