Skip to main content
Log in

The Hermite–Hadamard Inequality in Higher Dimensions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The Hermite–Hadamard inequality states that the average value of a convex function on an interval is bounded from above by the average value of the function at the endpoints of the interval. We provide a generalization to higher dimensions: let \(\Omega \subset {\mathbb {R}}^n\) be a convex domain and let \(f:\Omega \rightarrow {\mathbb {R}}\) be a convex function satisfying \(f \big |_{\partial \Omega } \ge 0\), then

$$\begin{aligned} \frac{1}{|\Omega |} \int _{\Omega }{f ~\text {d} {\mathcal {H}}^n} \le \frac{2 \pi ^{-1/2} n^{n+1}}{|\partial \Omega |} \int _{\partial \Omega }{f~\text {d} {\mathcal {H}}^{n-1}}. \end{aligned}$$

The constant \(2 \pi ^{-1/2} n^{n+1}\) is presumably far from optimal; however, it cannot be replaced by 1 in general. We prove slightly stronger estimates for the constant in two dimensions where we show that \(9/8 \le c_2 \le 8\). We also show, for some universal constant \(c>0\), if \(\Omega \subset {\mathbb {R}}^2\) is simply connected with smooth boundary, \(f:\Omega \rightarrow {\mathbb {R}}_{}\) is subharmonic, i.e., \(\Delta f \ge 0\), and \(f \big |_{\partial \Omega } \ge 0\), then

$$\begin{aligned} \int _{\Omega }{f~ \text {d} {\mathcal {H}}^2} \le c \cdot \text{ inradius }(\Omega ) \int _{\partial \Omega }{ f ~\text {d}{\mathcal {H}}^{1}}. \end{aligned}$$

We also prove that every domain \(\Omega \subset {\mathbb {R}}^n\) whose boundary is ’flat’ at a certain scale \(\delta \) admits a Hermite–Hadamard inequality for all subharmonic functions with a constant depending only on the dimension, the measure \(|\Omega |\), and the scale \(\delta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banuelos, R.: Four unknown constants: 2009 Oberwolfach workshop on Low Eigenvalues of Laplace and Schrodinger Operators. Oberwolfach Reports No. 06 (2009)

  2. Banuelos, R., Carroll, T.: Brownian motion and the fundamental frequency of a drum. Duke Math. J. 75(3), 575–602 (1994)

    Article  MathSciNet  Google Scholar 

  3. Banuelos, R., Carroll, T.: The maximal expected lifetime of Brownian motion. Math. Proc. R. Ir. Acad. 111A(1), 1–11 (2011)

    Article  MathSciNet  Google Scholar 

  4. Barani, A.: Hermite–Hadamard and Ostrowski type inequalities on hemispheres. Mediterr. J. Math. 13(6), 4253–4263 (2016)

    Article  MathSciNet  Google Scholar 

  5. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)

    Book  Google Scholar 

  6. Bessenyei, M.: The Hermite–Hadamard inequality on simplices. Am. Math. Mon. 115(4), 339–345 (2008)

    Article  MathSciNet  Google Scholar 

  7. Carroll, T., Ortega-Cerda, J.: The univalent Bloch–Landau constant, harmonic symmetry and conformal glueing. J. Math. Pures Appl. (9) 92(4), 396–406 (2009)

    Article  MathSciNet  Google Scholar 

  8. Chen, Y.: Hadamard’s inequality on a triangle and on a polygon. Tamkang J. Math. 35(3), 247–254 (2004)

    Article  MathSciNet  Google Scholar 

  9. Connelly, R., Ostro, S.: Ellipsoids and lightcurves. Geom. Dedicata 17(1), 87–98 (1984)

    Article  MathSciNet  Google Scholar 

  10. de la Cal, J., Cárcamo, J.: Multidimensional Hermite–Hadamard inequalities and the convex order. J. Math. Anal. Appl. 324(1), 248–261 (2006)

    Article  MathSciNet  Google Scholar 

  11. de la Cal, J., Cárcamo, J., Escauriaza, L.: A general multidimensional Hermite–Hadamard type inequality. J. Math. Anal. Appl. 356(2), 659–663 (2009)

    Article  MathSciNet  Google Scholar 

  12. Dragomir, S.S.: On Hadamards inequality on a disk. J. Inequal. Pure Appl. Math. 1, Article 2 (2000)

  13. Dragomir, S.S.: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5(4), 775–788 (2001)

    Article  MathSciNet  Google Scholar 

  14. Dragomir, S., Pearce, C.: Selected Topics on Hermite–Hadamard Inequalities and Applications. RGMIA Monographs. Victoria University (2000)

  15. Fejer, L.: Über die Fourierreihen, II. Math. Naturwiss, Anz. Ungar. Akad. Wiss. 24, 369–390 (1906)

  16. Hadamard, J.: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 58, 171–215 (1893)

    MATH  Google Scholar 

  17. Hermite, C.: Sur deux limites dune integrale define. Mathesis 3, 82 (1883)

    Google Scholar 

  18. Makar-Limanov, L.G.: The solution of the Dirichlet problem for the equation in a convex region. Mat. Zametki 9, 89–92 (1971) (in Russian); English translation in Math. Notes 9, 52–53 (1971)

  19. Mercer, A.: Hadamard’s inequality for a triangle, a regular polygon and a circle. Math. Inequal. Appl. 5(2), 219–223 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Mihailescu, M., Niculescu, C.: An extension of the Hermite–Hadamard inequality through subharmonic functions. Glasg. Math. J. 49(3), 509–514 (2007)

    Article  MathSciNet  Google Scholar 

  21. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, Hoboken (2002)

    MATH  Google Scholar 

  22. Niculescu, C.: The Hermite–Hadamard inequality for convex functions of a vector variable. Math. Inequal. Appl. 5(4), 619–623 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Niculescu, C., Persson, L.-E.: Old and New on the Hermite–Hadamard inequality. Real Anal. Exch. 29, 663–686 (2003–2004)

  24. Nowicka, M., Witkowski, A.: A refinement of the right-hand side of the Hermite–Hadamard inequality for simplices. Aequat. Math. 91, 121–128 (2017)

    Article  MathSciNet  Google Scholar 

  25. Pasteczka, P.: Jensen-type geometric shapes. arXiv:1804.03688

  26. Payne, L.E., Philippin, G.A.: Some remarks on the problems of elastic torsion and of torsional creep. In: Some Aspects of Mechanics of Continua, Part I, pp. 32–40. Jadavpur University, Calcutta (1977)

  27. Payne, L.E., Philippin, G.A.: Isoperimetric inequalities in the torsion and clamped membrane problems for convex plane domains. SIAM J. Math. Anal. 14(6), 1154–1162 (1983)

    Article  MathSciNet  Google Scholar 

  28. Rachh, M., Steinerberger, S.: On the location of maxima of the Schrödinger equation. Commun. Pure Appl. Math. 71, 1109–1122 (2018)

    Article  Google Scholar 

  29. Rivin, I.: Surface area and other measures of ellipsoids. Adv. Appl. Math. 39(4), 409–427 (2007)

    Article  MathSciNet  Google Scholar 

  30. Shaked, M., Shanthikumar, J.: Stochastic Orders. Springer, New York (2006)

    MATH  Google Scholar 

  31. Steinerberger, S.: Topological bounds for Fourier coefficients and applications to torsion. J. Funct. Anal. 274, 1611–1630 (2018)

    Article  MathSciNet  Google Scholar 

  32. Steinerberger, S.: An endpoint Alexandrov–Bakelman–Pucci estimate in the plane. Can. Math. Bull. (2018, to appear)

  33. Villani, C.: Optimal Transport. Old and New. Springer, Berlin (2008)

    MATH  Google Scholar 

  34. Wasowicz, S., Witkowski, A.: On some inequality of Hermite–Hadamard type. Opusc. Math. 32(3), 591–600 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the NSF (DMS-1763179) and the Alfred P. Sloan Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinerberger, S. The Hermite–Hadamard Inequality in Higher Dimensions. J Geom Anal 30, 466–483 (2020). https://doi.org/10.1007/s12220-019-00150-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00150-1

Keywords

Mathematics Subject Classification

Navigation