Skip to main content
Log in

The fibrous form of intracellular inclusion bodies in recombinant variant fibrinogen-producing cells is specific to the hepatic fibrinogen storage disease-inducible variant fibrinogen

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Fibrinogen storage disease (FSD) is a rare disorder that is characterized by the accumulation of fibrinogen in hepatocytes and induces liver injury. Six mutations in the γC domain (γG284R, γT314P, γD316N, the deletion of γG346-Q350, γG366S, and γR375W) have been identified for FSD. Our group previously established γ375W fibrinogen-producing Chinese hamster ovary (CHO) cells and observed aberrant large granular and fibrous forms of intracellular inclusion bodies. The aim of this study was to investigate whether fibrous intracellular inclusion bodies are specific to FSD-inducible variant fibrinogen. Thirteen expression vectors encoding the variant γ-chain were stably or transiently transfected into CHO cells expressing normal fibrinogen Aα- and Bβ-chains or HuH-7 cells, which were then immunofluorescently stained. Six CHO and HuH-7 cell lines that transiently produced FSD-inducible variant fibrinogen presented the fibrous (3.2–22.7 and 2.1–24.5%, respectively) and large granular (5.4–25.5 and 7.7–23.9%) forms of intracellular inclusion bodies. Seven CHO and HuH-7 cell lines that transiently produced FSD-non-inducible variant fibrinogen only exhibit the large granular form. These results demonstrate that transiently transfected variant fibrinogen-producing CHO cells and inclusion bodies of the fibrous form may be useful in non-invasive screening for FSD risk factors for FSD before its onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3:1894–904.

    Article  CAS  PubMed  Google Scholar 

  2. Lord ST. Fibrinogen and fibrin: scaffold proteins in hemostasis. Curr Opin Hematol. 2007;14:236–41.

    Article  CAS  PubMed  Google Scholar 

  3. De Moerloose P, Neerman-Arbez M. Congenital fibrinogen disorders. Semin Thromb Hemost. 2009;35:56–66.

    Article  Google Scholar 

  4. Brennan SO, Wyatt J, Medicina D, Callea F, George PM. Fibrinogen Brescia: hepatic endoplasmic reticulum storage and hypofibrinogenemia because of a γ284 Gly→Arg mutation. Am J Pathol. 2000;157:189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puls F, Goldschmidt I, Bantel H, Agne C, Bröcker V, Dämmrich M, et al. Autophagy-enhancing drug carbamazepine diminishes hepatocellular death in fibrinogen storage disease. J Hepatol. 2013;59:626–30.

    Article  CAS  PubMed  Google Scholar 

  6. Brennan SO, Davis RL, Conard K, Savo A, Furuya KN. Novel fibrinogen mutation γ314Thr→Pro (fibrinogen AI duPont) associated with hepatic fibrinogen storage disease and hypofibrinogenaemia. Liver Int. 2010;30:1541–7.

    Article  CAS  PubMed  Google Scholar 

  7. Dib N, Quelin F, Ternisien C, Hanss M, Michalak S, De Mazancourt P, et al. Fibrinogen angers with a new deletion (γGVYYQ 346-350) causes hypofibrinogenemia with hepatic storage. J Thromb Haemost. 2007;5:1999–2005.

    Article  CAS  PubMed  Google Scholar 

  8. Brennan SO, Maghzal G, Shneider BL, Gordon R, Magid MS, George PM. Novel fibrinogen γ375 Arg→Trp mutation (fibrinogen Aguadilla) causes hepatic endoplasmic reticulum storage and hypofibrinogenemia. Hepatology. 2002;36:652–8.

    Article  CAS  PubMed  Google Scholar 

  9. Francalanci P, Santorelli FM, Talini I, Boldrini R, Devito R, Camassei FD, et al. Severe liver disease in early childhood due to fibrinogen storage and de novo gamma375Arg→Trp gene mutation. J Pediatr. 2006;148:396–8.

    Article  PubMed  Google Scholar 

  10. Rubbia-Brandt L, Neerman-Arbez M, Rougemont A-L, Malé P-J, Spahr L. Fibrinogen gamma375 Arg→Trp mutation (fibrinogen Aguadilla) causes hereditary hypofibrinogenemia, hepatic endoplasmic reticulum storage disease and cirrhosis. Am J Surg Pathol. 2006;30:906–11.

    Article  PubMed  Google Scholar 

  11. Sogo T, Nagasaka H, Komatsu H, Inui A, Miida T, Callea F, et al. Fibrinogen storage disease caused by Aguadilla mutation presenting with hypobeta-lipoproteinemia and considerable liver disease. J Pediatr Gastroenterol Nutr. 2009;49:133–6.

    Article  PubMed  Google Scholar 

  12. Al-Hussaini A, Altalhi A, El Hag I, Al-Hussaini H, Francalanci P, Giovannoni I, et al. Hepatic fibrinogen storage disease due to the fibrinogen γ375 Arg→Trp mutation “fibrinogen Aguadilla” is present in Arabs. Saudi J Gastroenterol. 2014;20:255–61.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Casini A, Sokollik C, Lukowski SW, Lurz E, Rieubland C, de Moerloose P, et al. Hypofibrinogenemia and liver disease: a new case of Aguadilla fibrinogen and review of the literature. Haemophilia. 2015;21:820–7.

    Article  CAS  PubMed  Google Scholar 

  14. Sari S, Yilmaz G, Gonul II, Dalgic B, Akyol G, Giovannoni I, et al. Fibrinogen storage disease and cirrhosis associated with hypobetalipoproteinemia owing to fibrinogen Aguadilla in a Turkish child. Liver Int. 2015;35:2501–5.

    Article  CAS  PubMed  Google Scholar 

  15. Asselta R, Robusto M, Braidotti P, Peyvandi F, Nastasio S, D’Antiga L, et al. Hepatic fibrinogen storage disease: identification of two novel mutations (p.Asp316Asn, fibrinogen Pisa and p.Gly366Ser, fibrinogen Beograd) impacting on fibrinogen γ-module. J Thromb Haemost. 2015;13:1459–67.

    Article  CAS  PubMed  Google Scholar 

  16. Carrell RW, Lomas DA. Alpha 1-antitrypsin deficiency—a model for conformational diseases. N Engl J Med. 2002;346:45–53.

    Article  CAS  PubMed  Google Scholar 

  17. Lawless MW, Greene CM, Mulgrew A, Taggart CC, O’Neill SJ, McElvaney NG. Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z alpha 1-antitrypsin deficiency. J Immunol. 2004;17:5722–6.

    Article  Google Scholar 

  18. Teckman JH, An J-K, Blomenkamp K, Schmidt B, Perlmutter D. Mitochondrial autophagy and injury in the liver in alpha 1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol. 2004;286:G851–62.

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi T, Arai S, Ogiwara N, Takezawa Y, Nanya M, Terasawa F, et al. γ375W fibrinogen-synthesizing CHO cells indicate the accumulation of variant fibrinogen within endoplasmic reticulum. Thromb Res. 2014;133:101–7.

    Article  CAS  PubMed  Google Scholar 

  20. Rooney MM, Parise LV, Lord ST. Dissecting clot retraction and platelet aggregation: clot retraction does not require an intact fibrinogen chain C terminus. J Biol Chem. 1996;271:8553–5.

    Article  CAS  PubMed  Google Scholar 

  21. Haneishi A, Terasawa F, Fujihara N, Yamauchi K, Okumura N, Katsuyama T. Recombinant variant fibrinogens substituted at residues γ326Cys and γ339Cys demonstrated markedly impaired secretion of assembled fibrinogen. Thromb Res. 2009;124:368–72.

    Article  CAS  PubMed  Google Scholar 

  22. Terasawa F, Kamijyo Y, Fujihara N, Okumura N. Assembly and secretion of mutant fibrinogens with variant gamma-chain C terminal region (γ313-γ345). Rinsho Byori. 2010;58:772–8 (in Japanese).

    CAS  PubMed  Google Scholar 

  23. Okumura N, Gorkun OV, Lord ST. Severely impaired polymerization of recombinant fibrinogen γ364 Asp→His, the substitution discovered in a heterozygous individual. J Biol Chem. 1997;272:29596–601.

    Article  CAS  PubMed  Google Scholar 

  24. Terasawa F, Okumura N, Kitano K, Hayashida N, Shimosaka M, Okazaki M, et al. Hypofibrinogenemia associated with a heterozygous missense mutation γ153Cys to Arg (Matsumoto IV): in vitro expression demonstrates defective secretion of the variant fibrinogen. Blood. 1999;94:4122–31.

    CAS  PubMed  Google Scholar 

  25. Okumura N, Terasawa F, Tanaka H, Hirota M, Ota H, Kitano K, et al. Analysis of fibrinogen γ-chain truncations shows the C-terminus, particularly γIle387, is essential for assembly and secretion of this multichain protein. Blood. 2002;99:3654–60.

    Article  CAS  PubMed  Google Scholar 

  26. Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J. Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Res. 1982;42:3858–63.

    CAS  PubMed  Google Scholar 

  27. Meyer M, Bergmann F, Brennan SO. Novel fibrinogen mutation (γ313 Ser→Asn) associated with hypofibrinogenemia in two unrelated families. Blood Coagul Fibrinolysis. 2006;17:63–7.

    Article  CAS  PubMed  Google Scholar 

  28. Guglielmone HA, Sanchez MC, Abate Daga D, Bocco JL. A new heterozygous mutation in gamma fibrinogen gene leading to 326 Cys→Ser substitution in fibrinogen Córdoba is associated with defective polymerization and familial hypodysfibrinogenemia. J Thromb Haemost. 2004;2:352–4.

    Article  CAS  PubMed  Google Scholar 

  29. Dear A, Brennan SO, George PM. Familial hypodysfibrinogenaemia associated with second occurrence of γ326 Cys→Tyr mutation. Thromb Haemost. 2005;93:612–3.

    CAS  PubMed  Google Scholar 

  30. Meyer M, Franke K, Richter W, Steiniger F, Seyfert UT, Schenk J, et al. New molecular defects in the gamma subdomain of fibrinogen D-domain in four cases of (hypo)dysfibrinogenemia: fibrinogen variants Hannover VI, Homburg VII, Stuttgart and Suhl. Thromb Haemost. 2003;89:637–46.

    CAS  PubMed  Google Scholar 

  31. Song KS, Park NJ, Choi JR, Doh HJ, Chung KH. Fibrinogen Seoul (FGG Ala341Asp): a novel mutation associated with hypodysfibrinogenemia. Clin Appl Thromb Hemost. 2006;12:338–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 26460672 (N. Okumura).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Okumura.

Ethics declarations

Conflict of interest

None of the authors have any conflicts of interest with regards to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 9213 kb)

Supplementary material 2 (XLSX 12 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, S., Ogiwara, N., Mukai, S. et al. The fibrous form of intracellular inclusion bodies in recombinant variant fibrinogen-producing cells is specific to the hepatic fibrinogen storage disease-inducible variant fibrinogen. Int J Hematol 105, 758–768 (2017). https://doi.org/10.1007/s12185-017-2185-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-017-2185-5

Keywords

Navigation