Skip to main content
Log in

Inhibition des späten Natriumeinstroms (INa,late) als neuartige kardioprotektive Therapieoption

Inhibition of the late sodium current (INa,late) as an innovative cardioprotective treatment option

  • Klinische Pharmakologie
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

In den letzten Jahren konnte gezeigt werden, dass der späte Natriumeinstrom (INa,late) über die sarkolemmalen Natriumkanäle der Herzmuskelzelle bei der Pathophysiologie der myokardialen Ischämie eine wichtige Rolle spielt. Dabei kommt es durch einen vermehrten INa,late zu einer Erhöhung der intrazellulären Natriumkonzentration. Über den sarkolemmalen Na+/Ca2+-Austauscher (NCX) versucht die Zelle, Natrium aus dem Zytosol zu eliminieren, weshalb es im Gegenzug zu einer intrazellulären Kalziumüberladung mit konsekutiver kontraktiler Dysfunktion kommt. Mittels spezifischer Inhibition des INa,late wird diese pathologische Kaskade frühzeitig unterbrochen. Die daraus resultierende Abnahme des Natriumeinstroms führt zu einer verminderten intrazellulären Natriumkonzentration und konsekutiv verringerter NCX-bedingten Kalziumüberladung der Herzmuskelzelle. Experimentelle Daten weisen darauf hin, dass die Inhibition des INa,late die Infarktgröße reduziert sowie die linksventrikuläre Funktion nach akuter Ischämie und bei chronischer Herzinsuffizienz verbessert. Ranolazin als potenter und selektiver Inhibitor des INa,late führt zu einer symptomatischen Verbesserung von Anginapatienten, ohne den Blutdruck oder die Herzfrequenz zu beeinflussen. Neueste klinische Studien weisen zusätzlich auf antiarrhythmische Eigenschaften dieses neuartigen therapeutischen Ansatzes hin. Diese Übersichtsarbeit befasst sich mit den relevanten pathophysiologischen Konzepten, bei denen der INa,late eine Rolle spielt, und fasst die aktuelle Datenlage grundlagenwissenschaftlicher und klinischer Studien zusammen.

Abstract

Over the last few years, it has been shown that the late sodium current (INa,late) mediated by voltage-gated cardiac sodium channels plays an important role in the pathophysiology of myocardial ischemia. A rise in INa,late increases the intracellular sodium concentration. In consequence, the myocyte eliminates sodium ions through the sarcolemmal Na/Ca exchanger (NCX), leading to calcium overload and hence contractile dysfunction. By specifically inhibiting INa,late, this pathological cascade can be interrupted by improving the intracellular sodium concentration and hence the NCX-dependent calcium overload. Experimental data suggest that inhibition of INa,late decreases infarct size and improves left ventricular function after acute ischemia and during chronic heart failure. As a potent inhibitor of INa,late, ranolazine improves angina pectoris symptoms without changing blood pressure or heart rate. New clinical studies even point to beneficial antiarrhythmic effects. This review focuses on relevant pathophysiological concepts in which INa,late plays a role and summarizes the latest basic and clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Belardinelli L, Shryock JC, Fraser H (2006) Inhibition of the late sodium current as a potential cardioprotective principle: Effects of the late sodium current inhibitor ranolazine. Heart 92 (Suppl IV):IV6–IV14

    Article  PubMed  CAS  Google Scholar 

  2. Hasenfuss G, Maier LS (2006) Mechanism of action of the new anti-ischemia drug ranolazine. Clin Res Cardiol online published Nov 28: DOI 10.1007/s00392–007–0612-y

    Google Scholar 

  3. Undrovinas AI, Fleidervish IA, Makielski JC (1992) Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 71: 1231–1241

    PubMed  CAS  Google Scholar 

  4. Ward CA, Giles WR (1997) Ionic mechanism of the effects of hydrogen peroxide in rat ventricular myocytes. J Physiol 500: 631–642

    PubMed  CAS  Google Scholar 

  5. Song Y, Shryock, JC, Wagner S et al. (2006) Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharm Exp Ther 318: 214–222

    Article  CAS  Google Scholar 

  6. Ahern GP, Hsu SF, Klyachko VA, Jackson MB (200) Induction of persistent sodium current by exogenous and endogenous nitric oxide. J Biol Chem 275: 28810–28815

    Article  Google Scholar 

  7. Maier LS, Hasenfuss G (2006) Role of [Na+]i and the emerging involvement of the late Na current (INa,late) in the patho-physiology of cardiovascular disease. Europ Heart J 8 (Suppl A): A6–A9

    Article  CAS  Google Scholar 

  8. Ver Donck L, Borgers M, Verdonck F (1993) Inhibition of sodium and calcium overload pathology in the myocardium: a new cytoprotective principle. Cardiovasc Res 27: 349–357

    Google Scholar 

  9. Tani M, Neely JR (1991) Deleterious effects of digitalis on reperfusion-induced arrhythmias and myocardial injury in ischemic rat hearts: Possible involvements of myocardial Na+ and Ca2+ imbalance. Basic Res Cardiol 86: 340–354

    Article  PubMed  CAS  Google Scholar 

  10. Bers DM (2001) Excitation-contraction coupling and cardiac contractile force, 2nd edn. Kluwer Academic Publishers, Dordrecht, The Netherlands

  11. Silverman HS, Stern MD (1994) Ionic basis of ischaemic cardiac injury: insights from cellular studies. Cardiovasc Res 28: 581–597

    PubMed  CAS  Google Scholar 

  12. Wagner S, Seidler T, Picht E et al. (2003) Na+/Ca2+ exchanger overexpression predisposes to reactive oxygen species-induced injury. Cardiovasc Res 60: 404–412

    Article  PubMed  CAS  Google Scholar 

  13. Imahashi K, Pott C, Goldhaber JI et al. (2005) Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury. Circ Res 97: 916–921

    Article  PubMed  CAS  Google Scholar 

  14. Haigney MCP, Lakatta EG, Stern MD, Silverman HS (1994) Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation 90: 391–399

    PubMed  CAS  Google Scholar 

  15. Butwell NB, Ramasamy, R, Lazar I et al. (1993) Effect of lidocaine on contracture, intracellular sodium, and ph in ischemic rat hearts. Am J Physiol 264: H1884–1889

    PubMed  CAS  Google Scholar 

  16. Ver Donck L, Borgers M (1991) Myocardial protection by R 56865: a new principle based on prevention of ion channel pathology. Am J Physiol 261: H1828–1835

    Google Scholar 

  17. Valdivia CR, Chu WW, Pu J et al. (2005) Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 38: 475–483

    Article  PubMed  CAS  Google Scholar 

  18. Wagner S, Dybkova N, Rasenack ECL et al. (2006) Ca/calmodulin-dependent protein kinase II regulates cardiac Na channels. J Clin Invest 116: 3127–3138

    Article  PubMed  CAS  Google Scholar 

  19. Antzelevitch C, Belardinelli L, Zygmunt AC et al. (2004) Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 110: 904–910

    Article  PubMed  CAS  Google Scholar 

  20. Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN (2006) Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol (Suppl) 17: S169–S177

    Google Scholar 

  21. Fredj S, Sampson KJ, Liu H, Kass RS (2006) Molecular basis of ranolazine block of LQT-3 mutant sodium channels: Evidence for site of action. Br J Pharmacol 148: 16–24

    Article  PubMed  CAS  Google Scholar 

  22. Fraser H, Belardinelli L, Wang L et al. (2006) Ranolazine decreases diastolic calcium accumulation caused by atx-ii or ischemia in rat hearts. J Mol Cell Cardiol 41: 1031–1038

    Article  PubMed  CAS  Google Scholar 

  23. Gralinski MR, Black SC, Kilgore KS et al. (1994) Cardioprotective effects of ranolazine (RS-43285) in the isolated perfused rabbit heart. Cardiovasc Res 28: 1231–1237

    Article  PubMed  CAS  Google Scholar 

  24. Wang P, Fraser H, Lloyd SG et al. (2007) A comparison between ranolazine and cvt-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion. J Pharmacol Exp Ther 321: 213–220

    Article  PubMed  CAS  Google Scholar 

  25. Sossalla S, Wagner S, Rasenack ECL et al. (2008) Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts – role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol (in press)

  26. Song Y, Shryock JC, Wu L, Belardinelli L (2004) Antagonism by ranolazine of the pro-arrhythmic effects of increasing late INa in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 44: 192–199

    Article  PubMed  CAS  Google Scholar 

  27. Wu L, Shryock JC, Song Y et al. (2004) Antiarrhythmic effects of ranolazine in a guinea pig in vitro model of long-QT syndrome. J Pharm Exp Ther 310: 599–605

    Article  CAS  Google Scholar 

  28. Chandler MP, Stanley WC, Morita H et al. (2002) Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res 91: 278–280

    Article  PubMed  CAS  Google Scholar 

  29. Hayashida W, van Eyll C, Rousseau MF, Pouleur H (1994) Effects of ranolazine on left ventricular regional diastolic function in patients with ischemic heart disease. Cardiovasc Drugs Ther 8: 741–747

    Article  PubMed  CAS  Google Scholar 

  30. Chaitman BR, Skettino SL, Parker JO et al. (2004) Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J Am Coll Cardiol 43: 1375–1382

    Article  PubMed  CAS  Google Scholar 

  31. Chaitman BR, Pepine CJ, Parker JO et al. (2004) Effects of Ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina. A randomized controlled trial. JAMA 291: 309–316

    Article  PubMed  CAS  Google Scholar 

  32. Morrow DA, Scirica BM, Karwatowksa-Prokopezuk E et al. (2007) Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-Elevation Acute Coronary Syndromes. The MERLIN-TIMI 36 Randomized Trial. JAMA 297: 1775–1783

    Article  PubMed  CAS  Google Scholar 

  33. Scirica BM, Morrow DA, Hod H et al. (2007) Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the Metabolic Efficiency With Ranolazine for Less Ischemia in Non ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation 116: 1647–1652

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Dr. Maier wurde von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen eines Emmy Noether-Stipendiums unterstützt (MA 1982/1–5) und ist mittlerweile DFG Heisenberg-Stipendiat (MA 1982/3–1). Drs. Hasenfuss und Maier sind Projektleiter in der DFG Klinischen Forschergruppe 155.

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Die Autoren werden im Rahmen eines wissenschaftlichen Projekts von CV Therapeutics unterstützt, dem Hersteller von Ranolazin in den USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.S. Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sossalla, S., Hasenfuss, G. & Maier, L. Inhibition des späten Natriumeinstroms (INa,late) als neuartige kardioprotektive Therapieoption. Kardiologe 2, 142–148 (2008). https://doi.org/10.1007/s12181-008-0070-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-008-0070-4

Schlüsselwörter

Keywords

Navigation