Skip to main content
Log in

Isolation and Characterization of a Nitrile-Hydrolysing Bacterium Isoptericola variabilis RGT01

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

A nitrile-hydrolysing bacterium, identified as Isoptericola variabilis RGT01, was isolated from industrial effluent through enrichment culture technique using acrylonitrile as the carbon source. Whole cells of this microorganism exhibited a broad range of nitrile-hydrolysing activity as they hydrolysed five aliphatic nitriles (acetonitrile, acrylonitrile, propionitrile, butyronitrile and valeronitrile), two aromatic nitriles (benzonitrile and m-Tolunitrile) and two arylacetonitriles (4-Methoxyphenyl acetonitrile and phenoxyacetonitrile). The nitrile-hydrolysing activity was inducible in nature and acetonitrile proved to be the most efficient inducer. Minimal salt medium supplemented with 50 mM acetonitrile, an incubation temperature of 30 °C with 2 % v/v inoculum, at 200 rpm and incubation of 48 h were found to be the optimal conditions for maximum production (2.64 ± 0.12 U/mg) of nitrile-hydrolysing activity. This activity was stable at 30 °C as it retained around 86 % activity after 4 h at this temperature, but was thermolabile with a half-life of 120 min and 45 min at 40 °C and 50 °C respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He Y-C, Xu J-H, Su J-H, Zhou L (2010) Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl Biochem Biotechnol 160:1428–1440

    Article  CAS  PubMed  Google Scholar 

  2. Zheng Y-G, Chen J, Liu Z-Q, Wu M-H, Xing L-Y, Shen Y-C (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl Microbiol Biotechnol 77:985–993

    Article  CAS  PubMed  Google Scholar 

  3. Wang H, Sun H, Wei D (2013) Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction. BMC Biotechnol 13:14. doi:10.1186/1472-6750-13-14

  4. Zhang C-S, Zhang Z-J, Li C-X, Yu H-L, Zheng G-W, Xu J-H (2012) Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Appl Microbiol Biotechnol 95(1):91–99

    Article  CAS  PubMed  Google Scholar 

  5. Banerjee A, Kaul P, Banerjee UC (2006) Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Appl Microbiol Biotechnol 72:77–87

    Article  CAS  PubMed  Google Scholar 

  6. Mueller P, Egorova K, Vorgias CE, Boutou E, Trauthwein H, Verseck S, Antranikian G (2006) Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi. Prot Exp Purif 47:672–681

    Article  CAS  Google Scholar 

  7. Kamal A, Kumar MS, Kumar CG, Shaik TB (2011) Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber strain AKSH-84. J Microbiol Biotechnol 21:37–42

    Article  CAS  PubMed  Google Scholar 

  8. Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  PubMed  Google Scholar 

  9. Gong J-S, Lu Z-M, Li H, Shi J-S, Zhou Z-M, Xu Z-H (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:142–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Shen M, Zheng Y-G, Shen Y-C (2009) Isolation and characterization of a novel Arthrobacter nitroguajacolicus ZJUTB06-99, capable of converting acrylonitrile to acrylic acid. Process Biochem 44:781–785

    Article  CAS  Google Scholar 

  11. Holt JG, Kreig NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  12. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bakalidou A, Kampfer P, Berchtold M, Kuhnigk T, Wenzel M, Konig H (2002) Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. Int J Syst Evol Microbiol 52:1185–1192

    Article  CAS  PubMed  Google Scholar 

  14. Wu Y, Li W-J, Tian W, Zhang L-P, Xu L, Shen Q-R, Shen B (2010) Isoptericola jiangsuensis sp. nov., a chitin-degrading bacterium. Int J Syst Evol Microbiol 60:904–908

    Article  CAS  PubMed  Google Scholar 

  15. Komeda H, Hori Y, Kobayashi M, Shimizu S (1996) Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci USA 93:10572–10577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC (2007) A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol 23:345–353

    Article  CAS  Google Scholar 

  17. Nageshwar YVD, Sheelu G, Shambhu RR, Muluka H, Mehdi N, Malik MS, Kamal A (2011) Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity. Bioprocess Biosyst Eng 34:515–523

    Article  CAS  PubMed  Google Scholar 

  18. Bandyopadhyay AK, Nagasawa T, Asano Y, Fujishiro K, Tani Y, Yamada H (1986) Purification and characterization of benzonitrilases from Arthrobacter sp. strain J-1. Appl Environ Microbiol 51:302–306

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhu D, Mukherjee C, Biehl ER, Hua L (2007) Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA 110 by rational genome mining. J Biotechnol 129:645–650

    Article  CAS  PubMed  Google Scholar 

  20. Zhu D, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L (2008) A new nitrilase from Bradyrhizobium japonicum USDA 110 gene cloning, biochemical characterization and substrate specificity. J Biotechnol 133:327–333

    Article  CAS  PubMed  Google Scholar 

  21. Yang C, Wang X, Wei D (2011) A new nitrilase-producing strain named Rhodobacter sphaeroides LHS-305: biocatalytic characterization and substrate specificity. Appl Biochem Biotechnol 165:1556–1567

    Article  CAS  PubMed  Google Scholar 

  22. Nagasawa T, Nakamura T, Yamada H (1990) ε-Caprolactam, a new powerful inducer for the formation of Rhodococcus rhodochrous J1 nitrilase. Arch Microbiol 155:13–17

    Article  CAS  Google Scholar 

  23. Cramp R, Martin Gilmour M, Cowan DA (1997) Novel thermophilic bacteria producing nitrile-degrading enzymes. Microbiology 143:2313–2320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Gurdeep Kaur gratefully acknowledges Council for Scientific and Industrial Research, Govt. of India, for the fellowship. Dr. Rakesh Sharma, IGIB, New Delhi for identification of the strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, G., Soni, P., Tewari, R. et al. Isolation and Characterization of a Nitrile-Hydrolysing Bacterium Isoptericola variabilis RGT01. Indian J Microbiol 54, 232–238 (2014). https://doi.org/10.1007/s12088-014-0453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-014-0453-0

Keywords

Navigation