Skip to main content

Advertisement

Log in

Rumen methanogens: a review

  • Review
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Methanogens are a diverse group of organisms found in anaerobic environments such as anaerobic sludge digester, wet wood of trees, sewage, rumen, black mud, black sea sediments, etc which utilize carbon dioxide and hydrogen and produce methane. They are nutritionally fastidious anaerobes with the redox potential below −300 mV and usually grow at pH range of 6.0–8.0 [1]. Substrates utilized for growth and methane production include hydrogen, formate, methanol, methylamine, acetate, etc. They metabolize only restricted range of substrates and are poorly characterized with respect to other metabolic, biochemical and molecular properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart CS and Bryant MP (1998) The rumen bacteria. The rumen microbial ecosystem Elsevier applied science In Hobson P. N. (Ed). p 21–76

  2. Balch WE, Fox GE, Magram LJ and Woese CR (1979) Methanogens: Reevaluation of a Unique Biological Group. Microbiological reviews 43:260–296

    CAS  PubMed  Google Scholar 

  3. Kandler O and Konig H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol 118:141–152

    Article  CAS  PubMed  Google Scholar 

  4. Kandler O and Konig H (1985) Cell envelopes of archaebacteria. In C. R. Woese and R. S. Wolfe (ed.), The bacteria, vol. 8:413–457

  5. Konig H and Kandler O (1979) N-Acetyltalosaminuronic acid a constituent of the pseudomurein of the genus Methanobacterium. Arch Microbiol 123:295–299

    Article  Google Scholar 

  6. Konig H and Stetter KO (1982) Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe C 3:478–490

    Google Scholar 

  7. Kandler O (1982) Cell wall structures and their phylogenetic implications. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe C 3:149–160

    CAS  Google Scholar 

  8. Keltjens JT, Huberts MJ, Laarhoven WH and Vogels GD (1983) Structural elements of methanopterin, a novel pterin present in Methanobacterium thermoautotrophicum. Eur J Biochem 130:537–544

    Article  CAS  PubMed  Google Scholar 

  9. Hammes WP, Winter J and Kandler O (1979) The sensitivity of the pseudomurein-containing genus Methanobacterium to inhibitors of murein synthesis. Arch Microbiol 123: 275–279

    Article  CAS  Google Scholar 

  10. Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic P, Stetter KO and Klenk HP (1983) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic, sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87

    Google Scholar 

  11. Kandler O and Konig H (1985) Cell envelopes of archaebacteria. In C. R. Woese and R. S. Wolfe (eds.), The bacteria, vol. 8. 413–457

  12. Zehnder AJB, Huser BA, Brock TD and Wuhrmann K (1980) Characterization of an acetate decarboxylating nonhydrogen-oxidizing methane bacterium. Arch Microbiol 124:1–11

    Article  CAS  PubMed  Google Scholar 

  13. Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:514–541

    CAS  PubMed  Google Scholar 

  14. Lovely DR, Greening RC and Ferry JG (1984) Rapidly growing rumen methanogenic organism that synthesizes CoM and has a high affinity for formate. Appl Environ Microbiol 48:81–87

    Google Scholar 

  15. Miller TL, Wolin MJ, Hongxue Z and Bryant MP (1985) Characteristics of methanogens isolated from bovine rumen. Applied and Environmental Microbiology 51:201–202

    Google Scholar 

  16. Bryant MP (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25: 1324–1328

    CAS  PubMed  Google Scholar 

  17. Bryant MP, McBride BC and Wolfe RS (1968) Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis. J Bacteriol 95:1118–1123

    CAS  PubMed  Google Scholar 

  18. Macy JM, Snellen TE and Hungate RE (1972) Use of syringe methods for anaerobiosis. J Clin Nutr 25:1318–1323

    CAS  Google Scholar 

  19. Miller TL and Wolin MJ (1973) Formation of hydrogen and formate by Ruminococcus albus. J Bacteriol 116:836–842

    CAS  PubMed  Google Scholar 

  20. Edwards T and McBride BC (1975) New method for the isolation and identification of methanogenic bacteria. Appl Microbiol 29:540–545

    CAS  PubMed  Google Scholar 

  21. Balch WE and Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    CAS  PubMed  Google Scholar 

  22. Hermann M, Noll KM and Wolfe RS (1986) Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere. Appl Environ Microbiol 51: 1124–1126

    CAS  PubMed  Google Scholar 

  23. Balderson WL and Payne WJ (1976) Inhibition of methanogenesis in salt marsh sediments and whole cell suspensions of methanogenic bacteria by nitrogen oxides. Appl Environ Microbiol 32:264–260

    Google Scholar 

  24. Nelson DR and Zeikus JG (1974) Rapid method for the radioisotopic analysis of gaseous end products of anaerobic metabolism. Appl Microbiol 28:258–261

    CAS  PubMed  Google Scholar 

  25. Nadkarni MA, Martin FE, Jacques NA and Hunter N (2002) Determination of bacterial load by real time PCR using a broad-range (universal) probe and primers set. Microbiology 148: 257–266

    CAS  PubMed  Google Scholar 

  26. Tatsuoka N, Mohammed N, Mitsumori M, Tajima K, Hara K, Kurihara M and Itabashi H (2007) Analysis of methanogens in the bovine rumen by polymerase chain reaction single-strand conformation polymorphism. Animal Science Journal 78:512–518

    Article  CAS  Google Scholar 

  27. Tagawa T, Syutsubo K, Sekiguchi Y, Ohashi A and Harada H (2000) Quantification of methanogen cell density in anaerobic granular sludge consortia by fluorescence in-situ hybridization. Water Sci Technol 42:77–82

    CAS  Google Scholar 

  28. Stabnikova O, Liu XY, Wang JY and Ivanov V (2006) Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe. Appl microbial biotechnol 73:696–702

    Article  CAS  Google Scholar 

  29. Kamagata Y and Mikami E (1991) Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196

    Article  Google Scholar 

  30. Mayerhofer LE, Macario AJ and de Macario EC (1992) Lamina, a novel multicellular form of Methanosarcina mazei S-6. J Bacteriol 174:309–314

    CAS  PubMed  Google Scholar 

  31. Agrawal K, Harada H, Tseng IC and Okui H (1997) Treatment of dilute wastewater in a UASB reactor at a moderate temperature: microbiological aspects. J Ferment Bioeng 83: 185–190

    Article  CAS  Google Scholar 

  32. Ahring BK, Ibrahim AA and Mladenovska Z (2001) Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res 35:2446–2452

    Article  CAS  PubMed  Google Scholar 

  33. Postgate JR (1969) Methane as a minor product of pyruvate metabolism by sulphate-reducing and other bacteria. J Gen Microbiol 57:293–302

    CAS  PubMed  Google Scholar 

  34. Wolfe RS (1993) Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, ed. J. G. Ferry, Chapman & Hall, New York, p 1

    Google Scholar 

  35. Graham DE and White RH (2002) Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep 19:133–147

    Article  CAS  PubMed  Google Scholar 

  36. Eirich LD, Vogels GD and Wolfe RS (1979) Distribution of coenzyme F420 and properties of its hydrolytic fragments. J Bacteriol 140:20–27.48

    CAS  PubMed  Google Scholar 

  37. Daniels L, Fuchs G, Thauer RK and Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    CAS  PubMed  Google Scholar 

  38. Jacobson FS, Daniels L, Box JA, Walsh CT and Orme-Johnson WH (1982) Purification and properties of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from Methano-bacterium thermoautotrophicum. J Biol Chem 257:3385–3388

    CAS  PubMed  Google Scholar 

  39. Tzeng SF, Wolfe RS and Bryant MP (1975) Factor 420-dependent pyridine nucleotide-linked hydrogenase system of Methanobacterium ruminatium. J Bacteriol 121:184–191

    CAS  PubMed  Google Scholar 

  40. Yamazaki S (1982) A selenium-containing hydrogenase from Methanococcus vannielii. J Biol Chem 257:7926–7929

    CAS  PubMed  Google Scholar 

  41. Tzeng SF, Bryant MP and Wolfe RS (1975) Factor 420-dependent pyridine nucleotide-linked formate metabolism of Methanobacterium ruminantium. J Bacteriol 121:192–196

    CAS  Google Scholar 

  42. Yamazaki S, Tsai L, Stadtman TC, Jacobson FS and Walsh C (1980) Stereochemical studies of 8-hydroxy-5-deazaflavin-dependent NADP+ reductase from Methano-coccus vannielii. J Biol Chem 255:9025–9027

    CAS  PubMed  Google Scholar 

  43. Fuchs G and Stupperich E (1982) Autotrophic CO2 fixation pathway in Methanobacterium thermoautotrophicum. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg Abt 1 Orig Reihe C 3:277–288

    CAS  Google Scholar 

  44. Zeikus JG, Fuchs G, Kenealy W and Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis of M. thermoautotrophicum. J Bacteriol 132:604–613

    CAS  PubMed  Google Scholar 

  45. Hausinger RP, Orme-Johnson WH and Walsh C (1985) Factor 390 chromophores: phosphodiester between AMP or GMP and methanogen Factor 420. Biochemistry 24: 1629–1633

    Article  CAS  PubMed  Google Scholar 

  46. McBride, BC and Wolfe RS (1971) A new coenzyme of methyl transfer, coenzyme M. Biochemistry 10: 2317–2324

    Article  CAS  PubMed  Google Scholar 

  47. Romesser JA and Wolfe RS (1982) CDR factor, a new coenzyme required for carbon dioxide reduction to methane by extracts of Methanobacterium thermoautotrophicum. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg Abt 1 Orig. Reihe C 3:271–276

    CAS  Google Scholar 

  48. Leigh JA, Rinehart. Jr KL and Wolfe RS (1984) Structure of methanofuran, the carbon dioxide reduction factor of M. thermoautotrophicum. J Am Chem Soc 106: 3636–3640

    Article  CAS  Google Scholar 

  49. Jones JB, Bowers B and Stadtman TC (1977) Methanococcus vannielii: ultrastructure and sensitivity to detergents and antibiotics. J.Bacteriol. 130:1357–1363

    CAS  PubMed  Google Scholar 

  50. Blakley R (1969) The biochemistry of folic acid and relate pteridines. Interscience Publishers, Inc., New York

    Google Scholar 

  51. Fisher J, Spencer R and Walsh C (1976) Enzyme-catalyzed redox reactions with the flavin analogues 5-deazariboflavin, 5-deazariboflavin-5′-phosphate, and 5-deazariboflavin 5′-diphosphate, 5′-5′-adenosine ester. Biochemistry 15: 1054–1064

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sirohi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirohi, S.K., Pandey, N., Singh, B. et al. Rumen methanogens: a review. Indian J Microbiol 50, 253–262 (2010). https://doi.org/10.1007/s12088-010-0061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-010-0061-6

Keywords

Navigation