Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Gintonin Mitigates MPTP-Induced Loss of Nigrostriatal Dopaminergic Neurons and Accumulation of α-Synuclein via the Nrf2/HO-1 Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

This article was retracted on 16 April 2024

This article has been updated

Abstract

Gintonin, a ginseng-derived glycolipoprotein isolated from ginseng, has been shown to be neuroprotective in several neurological disorders such as Alzheimer’s disease models and depressive-like behaviors. In this study, we sought to investigate the potential protective mechanisms of gintonin in an in vivo MPTP and in vitro MPP+-mediated Parkinson’s disease (PD) model. We hypothesized that activation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1, potential therapeutic targets for neurodegeneration) with gintonin could abrogate PD-associated neurotoxicity by modulating the accumulation of α-synuclein, neuroinflammation, and apoptotic cell death in an MPTP/MPP+ models of PD. Our in vivo and in vitro findings suggest that the neuroprotective effects of gintonin were associated with the regulation of the Nrf2/HO-1 pathway, which regulated the expression of proinflammatory cytokines and nitric oxide synthase and apoptotic markers in the substantia nigra and striatum of the mice. Moreover, the neuroprotective effects of gintonin were also associated with a reduction in α-synuclein accumulation in the mouse substantia nigra and striatum. The neuroprotective effects of gintonin were further validated by analyzing the effects of gintonin on MPP+-treated SH-SY5Y cells, which confirmed the protective effects of gintonin. It remains for future basic and clinical research to determine the potential use of gintonin in Parkinson’s disease. However, to the best of our knowledge, marked alterations in biochemical and morphological setup of midbrain dopaminergic pathways by gintonin in MPTP mice model have not been previously reported. We believe that gintonin might be explored as an important therapeutic agent in the treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

Abbreviations

DA:

Dopamine

DMSO:

Dimethyl sulfoxide

FBS:

Fetal bovine serum

HO-1:

Heme oxygenase-1

NOS-2:

Nitric oxide synthase-2

MPP+ :

1-Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

Nrf2:

Nuclear factor erythroid 2-related factor 2

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SNpc:

Substantia nigra pars compacta

STR:

Striatum

TH:

Tyrosine hydroxylase

TNF-α:

Tumor necrosis factor-α

COX-2:

Cyclo-oxygenase-2

LPO:

Lipid peroxidation

Gt:

Gintonin

References

  1. Massano J, Bhatia KP (2012) Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med 2(6):a008870. https://doi.org/10.1101/cshperspect.a008870

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shen XL, Song N, Du XX, Li Y, Xie JX, Jiang H (2017) Nesfatin-1 protects dopaminergic neurons against MPP+/MPTP-induced neurotoxicity through the C-Raf-ERK1/2-dependent anti-apoptotic pathway. Sci Rep 7:40961. https://doi.org/10.1038/srep40961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Skibinski G, Hwang V, Ando DM, Daub A, Lee AK, Ravisankar A, Modan S, Finucane MM et al (2017) Nrf2 mitigates LRRK2- and α-synuclein-induced neurodegeneration by modulating proteostasis. Proc Natl Acad Sci 114(5):1165–1170. https://doi.org/10.1073/pnas.1522872114

    Article  CAS  PubMed  Google Scholar 

  4. Przedborski S (2005) Pathogenesis of nigral cell death in Parkinson’s disease. Park Relat Disord 11(Suppl 1):S3–S7. https://doi.org/10.1016/j.parkreldis.2004.10.012

    Article  Google Scholar 

  5. Wang Y, Zhao W, Li G, Chen J, Guan X, Chen X, Guan Z (2017) Neuroprotective effect and mechanism of thiazolidinedione on dopaminergic neurons in vivo and in vitro in Parkinson’s disease. PPAR Res 2017:4089214–4089212. https://doi.org/10.1155/2017/4089214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu X, Song Q, Li X, Li D, Zhang Q, Meng W, Zhao Q (2017) Neuroprotective effects of Kukoamine A on neurotoxin-induced Parkinson’s model through apoptosis inhibition and autophagy enhancement. Neuropharmacology 117:352–363. https://doi.org/10.1016/j.neuropharm.2017.02.022

    Article  CAS  PubMed  Google Scholar 

  7. Nolan YM, Sullivan AM, Toulouse A (2013) Parkinson’s disease in the nuclear age of neuroinflammation. Trends Mol Med 19(3):187–196. https://doi.org/10.1016/j.molmed.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  8. Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis 2011:716871–716818. https://doi.org/10.4061/2011/716871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fernandez-Santiago R, Garrido A, Infante J, Gonzalez-Aramburu I, Sierra M, Fernandez M, Valldeoriola F, Munoz E et al (2018) Alpha-synuclein (SNCA) but not dynamin 3 (DNM3) influences age at onset of leucine-rich repeat kinase 2 (LRRK2) Parkinson’s disease in Spain. Mov Disord. https://doi.org/10.1002/mds.27295

  10. Konno T, Deutschlander A, Heckman MG, Ossi M, Vargas ER, Strongosky AJ, van Gerpen JA, Uitti RJ et al (2018) Comparison of clinical features among Parkinson’s disease subtypes: a large retrospective study in a single center. J Neurol Sci 386:39–45. https://doi.org/10.1016/j.jns.2018.01.013

    Article  PubMed  Google Scholar 

  11. Cerri S, Blandini F (2018) Role of autophagy in Parkinson’s disease. Curr Med Chem. https://doi.org/10.2174/0929867325666180226094351

  12. Dexter DT, Jenner P (2013) Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 62:132–144. https://doi.org/10.1016/j.freeradbiomed.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  13. Armstrong RA, Kotzbauer PT, Perlmutter JS, Campbell MC, Hurth KM, Schmidt RE, Cairns NJ (2014) A quantitative study of alpha-synuclein pathology in fifteen cases of dementia associated with Parkinson disease. J Neural Transm (Vienna) 121(2):171–181. https://doi.org/10.1007/s00702-013-1084-z

    Article  CAS  PubMed  Google Scholar 

  14. Muller CM, de Vos RA, Maurage CA, Thal DR, Tolnay M, Braak H (2005) Staging of sporadic Parkinson disease-related alpha-synuclein pathology: inter- and intra-rater reliability. J Neuropathol Exp Neurol 64(7):623–628

    Article  PubMed  Google Scholar 

  15. Arduino DM, Esteves AR, Cardoso SM (2013) Mitochondria drive autophagy pathology via microtubule disassembly: a new hypothesis for Parkinson disease. Autophagy 9(1):112–114. https://doi.org/10.4161/auto.22443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Rosa P, Marini ES, Gelmetti V, Valente EM (2015) Candidate genes for Parkinson disease: lessons from pathogenesis. Clin Chim Acta 449:68–76. https://doi.org/10.1016/j.cca.2015.04.042

    Article  CAS  PubMed  Google Scholar 

  17. Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58(1):39–46. https://doi.org/10.1016/j.biopha.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  18. Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ et al (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20(5):867–879. https://doi.org/10.1093/hmg/ddq526

    Article  CAS  PubMed  Google Scholar 

  19. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491. https://doi.org/10.3233/JPD-130230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaki GS, Papavassiliou AG (2014) Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease. NeuroMolecular Med 16(2):217–230. https://doi.org/10.1007/s12017-014-8294-x

    Article  CAS  PubMed  Google Scholar 

  21. Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener 5:14. https://doi.org/10.1186/s40035-016-0060-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1802(1):29–44. https://doi.org/10.1016/j.bbadis.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  23. de Vries HE, Witte M, Hondius D, Rozemuller AJ, Drukarch B, Hoozemans J, van Horssen J (2008) Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med 45(10):1375–1383. https://doi.org/10.1016/j.freeradbiomed.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  24. Tufekci KU, Civi Bayin E, Genc S, Genc K (2011) The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis 2011:314082. https://doi.org/10.4061/2011/314082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chakrabarti S, Sen S, Lui E (2017) Effect of ginseng therapy on diabetes and its chronic complications: lessons learned. J Complement Integr Med 14 (4). doi:https://doi.org/10.1515/jcim-2016-0166

  26. Holmstrom KM, Kostov RV, Dinkova-Kostova AT (2016) The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicology 1:80–91. https://doi.org/10.1016/j.cotox.2016.10.002

    Article  Google Scholar 

  27. Carvalho AN, Marques C, Guedes RC, Castro-Caldas M, Rodrigues E, van Horssen J, Gama MJ (2016) S-Glutathionylation of Keap1: a new role for glutathione S-transferase pi in neuronal protection. FEBS Lett 590(10):1455–1466. https://doi.org/10.1002/1873-3468.12177

    Article  CAS  PubMed  Google Scholar 

  28. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374. https://doi.org/10.1089/ars.2007.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang H, Cheng E, Brooke S, Chang P, Sapolsky R (2003) Over-expression of antioxidant enzymes protects cultured hippocampal and cortical neurons from necrotic insults. J Neurochem 87(6):1527–1534. https://doi.org/10.1046/j.1471-4159.2003.02123.x

    Article  CAS  PubMed  Google Scholar 

  30. Lee CH, Kim JM, Kim DH, Park SJ, Liu X, Cai M, Hong JG, Park JH et al (2013) Effects of sun ginseng on memory enhancement and hippocampal neurogenesis. Phytother Res PTR 27(9):1293–1299. https://doi.org/10.1002/ptr.4873

    Article  PubMed  Google Scholar 

  31. Heo JH, Lee ST, Chu K, Oh MJ, Park HJ, Shim JY, Kim M (2008) An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer’s disease. Eur J Neurol 15(8):865–868. https://doi.org/10.1111/j.1468-1331.2008.02157.x

    Article  PubMed  Google Scholar 

  32. Lee JS, Choi HS, Kang SW, Chung JH, Park HK, Ban JY, Kwon OY, Hong HP et al (2011) Therapeutic effect of Korean red ginseng on inflammatory cytokines in rats with focal cerebral ischemia/reperfusion injury. Am J Chin Med 39(1):83–94. https://doi.org/10.1142/S0192415X1100866X

    Article  PubMed  Google Scholar 

  33. Pyo M-K, Choi S-H, Hwang S-H, Shin T-J, Lee B-H, Lee S-M, Lim Y-H, Kim D-H et al (2011) Novel glycolipoproteins from ginseng. J Ginseng Res 35(1):92–103. https://doi.org/10.5142/jgr.2011.35.1.092

    Article  CAS  Google Scholar 

  34. Shin TJ, Kim HJ, Kwon BJ, Choi SH, Kim HB, Hwang SH, Lee BH, Lee SM et al (2012) Gintonin, a ginseng-derived novel ingredient, evokes long-term potentiation through N-methyl-D-aspartic acid receptor activation: involvement of LPA receptors. Mol Cells 34(6):563–572. https://doi.org/10.1007/s10059-012-0254-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hwang SH, Lee BH, Choi SH, Kim HJ, Jung SW, Kim HS, Shin HC, Park HJ et al (2015) Gintonin, a novel ginseng-derived lysophosphatidic acid receptor ligand, stimulates neurotransmitter release. Neurosci Lett 584:356–361. https://doi.org/10.1016/j.neulet.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  36. Park H, Kim S, Rhee J, Kim HJ, Han JS, Nah SY, Chung C (2015) Synaptic enhancement induced by gintonin via lysophosphatidic acid receptor activation in central synapses. J Neurophysiol 113(5):1493–1500. https://doi.org/10.1152/jn.00667.2014

    Article  CAS  PubMed  Google Scholar 

  37. Hwang SH, Shin EJ, Shin TJ, Lee BH, Choi SH, Kang J, Kim HJ, Kwon SH et al (2012) Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, attenuates Alzheimer’s disease-related neuropathies: involvement of non-amyloidogenic processing. J Alzheimers Dis JAD 31(1):207–223. https://doi.org/10.3233/JAD-2012-120439

    Article  CAS  PubMed  Google Scholar 

  38. Lee BH, Kim J, Lee RM, Choi SH, Kim HJ, Hwang SH, Lee MK, Bae CS et al (2016) Gintonin enhances performance of mice in rotarod test: involvement of lysophosphatidic acid receptors and catecholamine release. Neurosci Lett 612:256–260. https://doi.org/10.1016/j.neulet.2015.12.026

    Article  CAS  PubMed  Google Scholar 

  39. Kim HJ, Park SD, Lee RM, Lee BH, Choi SH, Hwang SH, Rhim H, Kim HC et al (2017) Gintonin attenuates depressive-like behaviors associated with alcohol withdrawal in mice. J Affect Disord 215:23–29. https://doi.org/10.1016/j.jad.2017.03.026

    Article  CAS  PubMed  Google Scholar 

  40. Kim H, Lee BH, Choi SH, Kim HJ, Jung SW, Hwang SH, Rhim H, Kim HC et al (2015) Gintonin stimulates gliotransmitter release in cortical primary astrocytes. Neurosci Lett 603:19–24. https://doi.org/10.1016/j.neulet.2015.07.012

    Article  CAS  PubMed  Google Scholar 

  41. Jing H, Wang S, Wang M, Fu W, Zhang C, Xu D (2017) Isobavachalcone attenuates MPTP-induced Parkinson’s disease in mice by inhibition of microglial activation through NF-kappaB pathway. PLoS One 12(1):e0169560. https://doi.org/10.1371/journal.pone.0169560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim HJ, Shin EJ, Lee BH, Choi SH, Jung SW, Cho IH, Hwang SH, Kim JY et al (2015) Oral administration of gintonin attenuates cholinergic impairments by scopolamine, amyloid-beta protein, and mouse model of Alzheimer’s disease. Mol Cells 38(9):796–805. https://doi.org/10.14348/molcells.2015.0116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim S, Kim MS, Park K, Kim HJ, Jung SW, Nah SY, Han JS, Chung C (2016) Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration. J Ginseng Res 40(1):55–61. https://doi.org/10.1016/j.jgr.2015.05.001

    Article  PubMed  Google Scholar 

  44. Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2(1):141–151. https://doi.org/10.1038/nprot.2006.342

    Article  CAS  PubMed  Google Scholar 

  45. Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO (2017) Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther 23(1):33–44. https://doi.org/10.1111/cns.12588

    Article  CAS  PubMed  Google Scholar 

  46. Badshah H, Ali T, Kim MO (2016) Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFkappaB signaling pathway. Sci Rep 6:24493. https://doi.org/10.1038/srep24493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Amin FU, Shah SA, Kim MO (2017) Vanillic acid attenuates Abeta1-42-induced oxidative stress and cognitive impairment in mice. Sci Rep 7:40753. https://doi.org/10.1038/srep40753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khan M, Shah SA, Kim MO (2017) 17beta-estradiol via SIRT1/acetyl-p53/NF-kB signaling pathway rescued postnatal rat brain against acute ethanol intoxication. Mol Neurobiol 55:3067–3078. https://doi.org/10.1007/s12035-017-0520-8

    Article  CAS  PubMed  Google Scholar 

  49. Kim MW, Abid NB, Jo MH, Jo MG, Yoon GH, Kim MO (2017) Suppression of adiponectin receptor 1 promotes memory dysfunction and Alzheimer’s disease-like pathologies. Sci Rep 7(1):12435. https://doi.org/10.1038/s41598-017-12632-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taylor TN, Greene JG, Miller GW (2010) Behavioral phenotyping of mouse models of Parkinson’s disease. Behav Brain Res 211(1):1–10. https://doi.org/10.1016/j.bbr.2010.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang W, He H, Song H, Zhao J, Li T, Wu L, Zhang X, Chen J (2016) Neuroprotective effects of salidroside in the MPTP mouse model of Parkinson’s disease: involvement of the PI3K/Akt/GSK3beta pathway. Park Dis 2016:9450137. https://doi.org/10.1155/2016/9450137

    Article  CAS  Google Scholar 

  52. Zhou Q, Chen B, Wang X, Wu L, Yang Y, Cheng X, Hu Z, Cai X et al (2016) Sulforaphane protects against rotenone-induced neurotoxicity in vivo: involvement of the mTOR, Nrf2, and autophagy pathways. Sci Rep 6:32206. https://doi.org/10.1038/srep32206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zaidi AA, Ali A, Khan MA, Shakir L, Saeed A (2017) Haloperidol induced Parkinson’s disease mice model and motor-function modulation with Pyridine-3-carboxylic acid. Biomed Res Ther 4(05):1305. https://doi.org/10.15419/bmrat.v4i05.169

    Article  Google Scholar 

  54. Guven Y, Tuna EB, Dincol ME, Aktoren O (2014) X-ray diffraction analysis of MTA-Plus, MTA-Angelus and DiaRoot BioAggregate. Eur J Dent 8(2):211–215. https://doi.org/10.4103/2278-344X.130603

    Article  PubMed  PubMed Central  Google Scholar 

  55. Guo YJ, Dong SY, Cui XX, Feng Y, Liu T, Yin M, Kuo SH, Tan EK et al (2016) Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of alpha-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res 60(10):2161–2175. https://doi.org/10.1002/mnfr.201600111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheng Y, He G, Mu X, Zhang T, Li X, Hu J, Xu B, Du G (2008) Neuroprotective effect of baicalein against MPTP neurotoxicity: behavioral, biochemical and immunohistochemical profile. Neurosci Lett 441(1):16–20. https://doi.org/10.1016/j.neulet.2008.05.116

    Article  CAS  PubMed  Google Scholar 

  57. Meng F, Wang J, Ding F, Xie Y, Zhang Y, Zhu J (2017) Neuroprotective effect of matrine on MPTP-induced Parkinson’s disease and on Nrf2 expression. Oncol Lett 13(1):296–300. https://doi.org/10.3892/ol.2016.5383

    Article  CAS  PubMed  Google Scholar 

  58. Kozina EA, Khakimova GR, Khaindrava VG, Kucheryanu VG, Vorobyeva NE, Krasnov AN, Georgieva SG, Kerkerian-Le Goff L et al (2014) Tyrosine hydroxylase expression and activity in nigrostriatal dopaminergic neurons of MPTP-treated mice at the presymptomatic and symptomatic stages of parkinsonism. J Neurol Sci 340(1–2):198–207. https://doi.org/10.1016/j.jns.2014.03.028

    Article  CAS  PubMed  Google Scholar 

  59. Hong Z, Wang G, Gu J, Pan J, Bai L, Zhang S, Chen SD (2007) Tripchlorolide protects against MPTP-induced neurotoxicity in C57BL/6 mice. Eur J Neurosci 26(6):1500–1508. https://doi.org/10.1111/j.1460-9568.2007.05766.x

    Article  PubMed  Google Scholar 

  60. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91. https://doi.org/10.3389/fnana.2015.00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Q, Ren N, Cai Z, Lin Q, Wang Z, Zhang Q, Wu S, Li H (2017) Paraquat and MPTP induce neurodegeneration and alteration in the expression profile of microRNAs: the role of transcription factor Nrf2. NPJ Park Dis 3:31. https://doi.org/10.1038/s41531-017-0033-1

    Article  Google Scholar 

  62. Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101(2):665–670. https://doi.org/10.1073/pnas.0307453101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tieu K (2011) A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 1(1):a009316. https://doi.org/10.1101/cshperspect.a009316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen WF, Wu L, Du ZR, Chen L, Xu AL, Chen XH, Teng JJ, Wong MS (2017) Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine 25:93–99. https://doi.org/10.1016/j.phymed.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  65. Xu L, Pu J (2016) Alpha-synuclein in Parkinson’s disease: from pathogenetic dysfunction to potential clinical application. Park Dis 2016:1720621–1720610. https://doi.org/10.1155/2016/1720621

    Article  CAS  Google Scholar 

  66. Thomas B, Mandir AS, West N, Liu Y, Andrabi SA, Stirling W, Dawson VL, Dawson TM et al (2011) Resistance to MPTP-neurotoxicity in alpha-synuclein knockout mice is complemented by human alpha-synuclein and associated with increased beta-synuclein and Akt activation. PLoS One 6(1):e16706. https://doi.org/10.1371/journal.pone.0016706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smeyne RJ, Breckenridge CB, Beck M, Jiao Y, Butt MT, Wolf JC, Zadory D, Minnema DJ et al (2016) Assessment of the effects of MPTP and Paraquat on dopaminergic neurons and microglia in the substantia nigra pars compacta of C57BL/6 mice. PLoS One 11(10):e0164094. https://doi.org/10.1371/journal.pone.0164094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Takagi S, Hayakawa N, Kimoto H, Kato H, Araki T (2007) Damage to oligodendrocytes in the striatum after MPTP neurotoxicity in mice. J Neural Transm (Vienna) 114(12):1553–1557. https://doi.org/10.1007/s00702-007-0790-9

    Article  CAS  PubMed  Google Scholar 

  69. Xicoy H, Wieringa B, Martens GJ (2017) The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener 12(1):10. https://doi.org/10.1186/s13024-017-0149-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moreira S, Fonseca I, Nunes MJ, Rosa A, Lemos L, Rodrigues E, Carvalho AN, Outeiro TF et al (2017) Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Exp Neurol 295:77–87. https://doi.org/10.1016/j.expneurol.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  71. Castro-Caldas M, Carvalho AN, Rodrigues E, Henderson CJ, Wolf CR, Rodrigues CM, Gama MJ (2012) Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson’s disease. Mol Neurobiol 46(2):475–486. https://doi.org/10.1007/s12035-012-8295-4

    Article  CAS  PubMed  Google Scholar 

  72. Yacoubian TA, Standaert DG (2009) Targets for neuroprotection in Parkinson’s disease. Biochim Biophys Acta 1792(7):676–687. https://doi.org/10.1016/j.bbadis.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  73. Muramatsu Y, Kurosaki R, Watanabe H, Michimata M, Matsubara M, Imai Y, Araki T (2003) Cerebral alterations in a MPTP-mouse model of Parkinson’s disease—an immunocytochemical study. J Neural Transm (Vienna) 110(10):1129–1144. https://doi.org/10.1007/s00702-003-0021-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016M3C7A1904391 and NRF-2016M3C7A1913845).

Author information

Authors and Affiliations

Authors

Contributions

MGJ: Concept design, data collection and assembly, data analysis and interpretation, animal grouping and treatment, and manuscript preparation. MI: Concept, design, data collection, analysis and interpretation, data assembly, and manuscript preparation. MHJ: conception, data collection, and analysis and interpretation. LY: in vitro data collection and analysis. KCC: in vitro data collection and analysis. SN: provision of gintonin and critical idea for in vivo experiments. HH: basic in vitro data analysis. HR: provision and managing of critical idea for experiments and basic in vitro data analysis. MOK: provision of study material, data analysis and interpretation, administrative support, critical reading of manuscript and final approval of manuscript.

Corresponding authors

Correspondence to Hyewhon Rhim or Myeong Ok Kim.

Ethics declarations

The animals used in the experiment were handled in accordance with the animal ethics committee (IACUC) guidelines issued by the Division of Applied Life Sciences, Department of Biology at Gyeongsang National University, South Korea. The methods used for animal’s experiments were in accordance with the already-approved guidelines (Approval ID 125) by the animal ethics committee (IACUC) of the Division of Applied Life Sciences, Department of Biology at Gyeongsang National University, South Korea.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s12035-024-04175-8

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, M.G., Ikram, M., Jo, M.H. et al. RETRACTED ARTICLE: Gintonin Mitigates MPTP-Induced Loss of Nigrostriatal Dopaminergic Neurons and Accumulation of α-Synuclein via the Nrf2/HO-1 Pathway. Mol Neurobiol 56, 39–55 (2019). https://doi.org/10.1007/s12035-018-1020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1020-1

Keywords

Navigation