Skip to main content
Log in

Early Exposure to Ketamine Impairs Axonal Pruning in Developing Mouse Hippocampus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mounting evidence suggests that prolonged exposure to general anesthesia (GA) during brain synaptogenesis damages the immature neurons and results in long-term neurocognitive impairments. Importantly, synaptogenesis relies on timely axon pruning to select axons that participate in active neural circuit formation. This process is in part dependent on proper homeostasis of neurotrophic factors, in particular brain-derived neurotrophic factor (BDNF). We set out to examine how GA may modulate axon maintenance and pruning and focused on the role of BDNF. We exposed post-natal day (PND)7 mice to ketamine using a well-established dosing regimen known to induce significant developmental neurotoxicity. We performed morphometric analyses of the infrapyramidal bundle (IPB) since IPB is known to undergo intense developmental modeling and as such is commonly used as a well-established model of in vivo pruning in rodents. When IPB remodeling was followed from PND10 until PND65, we noted a delay in axonal pruning in ketamine-treated animals when compared to controls; this impairment coincided with ketamine-induced downregulation in BDNF protein expression and maturation suggesting two conclusions: a surge in BDNF protein expression “signals” intense IPB pruning in control animals and ketamine-induced downregulation of BDNF synthesis and maturation could contribute to impaired IPB pruning. We conclude that the combined effects on BDNF homeostasis and impaired axon pruning may in part explain ketamine-induced impairment of neuronal circuitry formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23(3):876–882

    CAS  PubMed  Google Scholar 

  2. Loepke AW, Istaphanous GK, McAuliffe JJ 3rd, Miles L, Hughes EA, McCann JC, Harlow KE, Kurth CD et al (2009) The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning, and memory. Anesth Analg 108(1):90–104

    Article  CAS  PubMed  Google Scholar 

  3. Paule MG, Li M, Allen RR, Liu F, Zou X, Hotchkiss C, Hanig JP, Patterson TA et al (2011) Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol 33(2):220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rizzi S, Carter LB, Ori C, Jevtovic-Todorovic V (2008) Clinical anesthesia causes permanent damage to the fetal guinea pig brain. Brain Pathol 18(2):198–210

    Article  PubMed  Google Scholar 

  5. Fredriksson A, Pontén E, Gordh T, Eriksson P (2007) Neonatal exposure to a combination of N-methyl-d-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology 107(3):427–436

    Article  CAS  PubMed  Google Scholar 

  6. Viberg H, Pontén E, Eriksson P, Gordh T, Fredriksson A (2008) Neonatal ketamine exposure results in changes in biochemical substrates of neuronal growth and synaptogenesis, and alters adult behavior irreversibly. Toxicology 249(2–3):153–159

    Article  CAS  PubMed  Google Scholar 

  7. Kodama M, Satoh Y, Otsubo Y, Araki Y, Yonamine R, Masui K, Kazama T (2011) Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology 115(5):979–991

    Article  PubMed  Google Scholar 

  8. Bishop DL, Misgeld T, Walsh MK, Gan WB, Lichtman JW (2004) Axon branch removal at developing synapses by axosome shedding. Neuron 44:651–661

    Article  CAS  PubMed  Google Scholar 

  9. Luo L, O’Leary DD (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156

    Article  CAS  PubMed  Google Scholar 

  10. Wilder RT, Flick RP, Sprung J et al (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804

    Article  PubMed  PubMed Central  Google Scholar 

  11. Singh KK, Park KJ, Hong EJ, Kramer BM, Greenberg ME, Kaplan DR, Miller FD (2008) Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci 11:649–658

    Article  CAS  PubMed  Google Scholar 

  12. Lu LX, Yon JH, Carter LB, Jevtovic-Todorovic V (2006) General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis 11:1603–1615

    Article  CAS  PubMed  Google Scholar 

  13. Pearn ML, Hu Y, Niesman IR, Patel HH, Drummond JC, Roth DM, Akassoglou K, Patel PM et al (2012) Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology 116:352–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Young C, Jevtovic-Todorovic V, Qin YQ, Tenkova T, Wang H, Labruyere J, Olney JW (2005) Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol 146(2):189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bagri A, Cheng HJ, Yaron A, Pleasure SJ, Tessier-Lavigne M (2003) Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113:285–299

    Article  CAS  PubMed  Google Scholar 

  16. Yon JH, Daniel-Johnson J, Carter LB, Jevtovic-Todorovic V (2005) Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135:815–827

    Article  CAS  PubMed  Google Scholar 

  17. Liu XB, Low LK, Jones EG, Cheng HJ (2005) Stereotyped axon pruning via plexin signaling is associated with synaptic complex elimination in the hippocampus. J Neurosci 25:9124–9134

    Article  CAS  PubMed  Google Scholar 

  18. Lawrence JM, Black IB, Mytilineou C, Field PM, Raisman G (1979) Decentralization of the superior cervical ganglion in neonates impairs the development of the innervations of the iris. A quantitative ultrastructural study. Brain Res 168:13–19

    Article  CAS  PubMed  Google Scholar 

  19. Majdan M, Miller FD (1999) Neuronal life and death decisions: functional antagonism between the Trk and p75 neurotrophin receptors. Int J Dev Neurosci 17:153–161

    Article  CAS  PubMed  Google Scholar 

  20. Miller FD, Kaplan DR (2001) Neurotrophin signaling pathways regulating neuronal apoptosis. Cell Mol Life Sci 58:1045–1053

    Article  CAS  PubMed  Google Scholar 

  21. Mintz CD, Barrett KM, Smith SC, Benson DL, Harrison NL (2013) Anesthetics interfere with axon guidance in developing mouse neocortical neurons in vitro via a γ-aminobutyric acid type A receptor mechanism. Anesthesiology 118:825–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh KK, Miller FD (2005) Activity regulates positive and negative neurotrophin-derived signals to determine axon competition. Neuron 45:837–845

    Article  CAS  PubMed  Google Scholar 

  23. Crusio WE, Schwegler H (2005) Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice. Behav Brain Funct 1(1):3–11

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fredriksson A, Archer T, Alm H, Gordh T, Eriksson P (2004) Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res 153:367–376

    Article  CAS  PubMed  Google Scholar 

  25. Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89(3):312–323

    Article  CAS  PubMed  Google Scholar 

  26. Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270:593–598

    Article  CAS  PubMed  Google Scholar 

  27. Lu B, Figurov A (1997) Role of neurotrophins in synapse development and plasticity. Rev Neurosci 8:1–12

    Article  CAS  PubMed  Google Scholar 

  28. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077

    Article  CAS  PubMed  Google Scholar 

  29. Chen ZY, Ieraci A, Teng H, Dall H, Meng CX, Herrera DG, Nykjaer A, Hempstead BL et al (2005) Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J Neurosci 25:6156–6166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants R0144517 (NIH/NICHD), R0144517-S (NIH/NICHD), R01 GM118197 (NIH/NIGMS), R21 HD080281 (NIH/NICHD), John E. Fogarty Award 007423-128322 (NIH), and March of Dimes National Award, USA (to Vesna Jevtovic-Todorovic). Vesna Jevtovic-Todorovic was an Established Investigator of the American Heart Association. We thank Jonathan Park for his assistance with the morphometric analysis of the IPB pruning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Jevtovic-Todorovic.

Ethics declarations

Conflicts of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

The experiments were approved by the Animal Use and Care Committees at the University of Colorado, the Office of Laboratory Animal Resources (OLAR), Aurora, Colorado and the Animal Use and Care Committees of the University of Virginia, Charlottesville, Virginia. The experiments were done in accordance with the Public Health Service’s Policy on Humane Care and Use of Laboratory Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obradovic, A.L., Atluri, N., Dalla Massara, L. et al. Early Exposure to Ketamine Impairs Axonal Pruning in Developing Mouse Hippocampus. Mol Neurobiol 55, 164–172 (2018). https://doi.org/10.1007/s12035-017-0730-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0730-0

Keywords

Navigation