Skip to main content

Advertisement

Log in

Combination of PKCε Activation and PTP1B Inhibition Effectively Suppresses Aβ-Induced GSK-3β Activation and Tau Phosphorylation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glycogen synthase kinase-3β (GSK-3β) is a key element to phosphorylate tau and form neurofibrillary tangles (NFTs) found in tauopathies including Alzheimer’s disease (AD). A current topic for AD therapy is focused upon how to prevent tau phosphorylation. In the present study, PKCε activated Akt and inactivated GSK-3β by directly interacting with each protein. Inhibition of protein tyrosine phosphatase 1B (PTP1B), alternatively, caused an enhancement in the tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), allowing activation of Akt through a pathway along an IRS-1/phosphatidylinositol 3 kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt axis, to phosphorylate and inactivate GSK-3β. Combination of PKCε activation and PTP1B inhibition more sufficiently activated Akt and inactivated GSK-3β than each independent treatment, to suppress amyloid β (Aβ)-induced tau phosphorylation and ameliorate spatial learning and memory impairment in 5xFAD transgenic mice, an animal model of AD. This may represent an innovative strategy for AD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98(12):6923–6928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6(3):201–214

    Article  CAS  PubMed  Google Scholar 

  3. Mandelkow E, von Bergen M, Biernat J, Mandelkow EM (2007) Structural principles of tau and the paired helical filaments of Alzheimer's disease. Brain Pathol 17(1):83–90

    Article  CAS  PubMed  Google Scholar 

  4. Trinczek B, Ebneth A, Mandelkow EM, Mandelkow E (1999) Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci 112(Pt14):2355–2367

    CAS  PubMed  Google Scholar 

  5. Garcia ML, Cleveland DW (2001) Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol 13(1):41–48

    Article  CAS  PubMed  Google Scholar 

  6. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer's disease. Biochim Biophys Acta 1739(2–3):216–223

    Article  CAS  PubMed  Google Scholar 

  7. Cuchillo-Ibanez I, Seereeram A, Byers HL, Leung KY, Ward MA, Anderton BH, Hanger DP (2008) Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB J 22(9):3186–3195

    Article  CAS  PubMed  Google Scholar 

  8. Drubin DG, Kirschner MW (1986) Tau protein function in living cells. J Cell Biol 103(6 Pt2):2739–2746

    Article  CAS  PubMed  Google Scholar 

  9. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  10. Selkoe DJ (1986) Altered structural proteins in plaques and tangles: what do they tell us about the biology of Alzheimer’s disease? Neurobiol Aging 7(6):425–432

    Article  CAS  PubMed  Google Scholar 

  11. Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672

    Article  CAS  PubMed  Google Scholar 

  12. Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B et al (2009) β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29(28):9078–9089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hurtado DE, Molina-Porcel L, Iba M, Aboagye AK, Paul SM, Trojanowski JQ, Lee VM (2010) Aβ accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model. Am J Pathol 177(4):1977–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Héraud C, Goufak D, Ando K, Leroy K, Suain V, Yilmaz Z, De Decker R, Authelet M et al (2014) Increased misfolding and truncation of tau in APP/PS1/tau transgenic mice compared to mutant tau mice. Neurobiol Dis 62:100–112

    Article  PubMed  Google Scholar 

  15. Stancu IC, Ris L, Vasconcelos B, Marinangeli C, Goeminne L, Laporte V, Haylani LE, Couturier J et al (2014) Tauopathy contributes to synaptic and cognitive deficits in a murine model for Alzheimer's disease. FASEB J 28(6):2620–2631

    Article  CAS  PubMed  Google Scholar 

  16. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622

    Article  CAS  PubMed  Google Scholar 

  17. Jeganathan S, Hascher A, Chinnathambi S, Biernat J, Mandelkow EM, Mandelkow E (2008) Proline-directed pseudo-phosphorylation at AT8 and PHF1 epitopes induces a compaction of the paperclip folding of Tau and generates a pathological (MC-1) conformation. J Biol Chem 283(46):32066–32076

    Article  CAS  PubMed  Google Scholar 

  18. Pei JJ, Björkdahl C, Zhang H, Zhou X, Winblad B (2008) p70 S6 kinase and tau in Alzheimer's disease. J Alzheimers Dis 14(4):385–392

    PubMed  Google Scholar 

  19. Takashima A (2006) GSK-3 is essential in the pathogenesis of Alzheimer's disease. J Alzheimers Dis 9(3 Suppl):309–317

    CAS  PubMed  Google Scholar 

  20. Tsuchiya A, Kanno T, Nagaya H, Shimizu T, Tanaka A, Nishizaki T (2014) PTP1B inhibition causes Rac1 activation by enhancing receptor tyrosine kinase signaling. Cell Physiol Biochem 33(4):1097–1105

    Article  CAS  PubMed  Google Scholar 

  21. Kanno T, Yamamoto H, Yaguchi T, Hi R, Mukasa T, Fujikawa H, Nagata T, Yamamoto S et al (2006) The linoleic acid derivative DCP-LA selectively activates PKC-ε, possibly binding to the phosphatidylserine binding site. J Lipid Res 47(6):1146–1156

    Article  CAS  PubMed  Google Scholar 

  22. Shimizu T, Kanno T, Tanaka A, Nishizaki T (2011) α, β-DCP-LA selectively activates PKC-ε and stimulates neurotransmitter release with the highest potency among 4 diastereomers. Cell Physiol Biochem 27(2):149–158

    CAS  PubMed  Google Scholar 

  23. Wada A (2009) Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3β, β-catenin, and neurotrophin cascades. J Pharmacol Sci 110(1):14–28

    Article  CAS  PubMed  Google Scholar 

  24. Tsuchiya A, Kanno T, Nishizaki T (2013) Diacylglycerol promotes GLUT4 translocation to the cell surface in a PKCε-dependent and PKCλ/ι and -ζ-independent manner. Life Sci 93(5–6):240–246

    Article  CAS  PubMed  Google Scholar 

  25. Nagata T, Tomiyama T, Mori H, Yaguchi T, Nishizaki T (2010) DCP-LA neutralizes mutant amyloid β peptide-induced impairment of long-term potentiation and spatial learning. Behav Brain Res 206(1):151–154

    Article  CAS  PubMed  Google Scholar 

  26. Nagata T, Yamamoto S, Yaguchi T, Iso H, Tanaka A, Nishizaki T (2005) The newly synthesized linoleic acid derivative DCP-LA ameliorates memory deficits in animal models treated with amyloid-β peptide and scopolamine. Psychogeriatrics 5(4):122–126

    Article  Google Scholar 

  27. Yaguchi T, Nagata T, Mukasa T, Fujikawa H, Yamamoto H, Yamamoto S, Iso H, Tanaka A et al (2006) Linoleic acid derivative DCP-LA improves learning impairment in SAMP8. Neuroreport 17(1):105–108

    Article  CAS  PubMed  Google Scholar 

  28. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M et al (2006) Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140

    Article  CAS  PubMed  Google Scholar 

  29. Rizzo G, Martinelli P, Manners D, Scaglione C, Tonon C, Cortelli P, Malucelli E, Capellari S et al (2008) Diffusion-weighted brain imaging study of patients with clinical diagnosis of corticobasal degeneration, progressive supranuclear palsy and Parkinson's disease. Brain 131(Pt10):2690–2700

    Article  PubMed  Google Scholar 

  30. Nussbaum JM, Seward ME, Bloom GS (2013) Alzheimer disease: a tale of two prions. Prion 7(1):14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duyckaerts C (2011) Tau pathology in children and young adults: can you still be unconditionally baptist. Acta Neuropathol 121(2):145–147

    Article  PubMed  Google Scholar 

  32. Mukaetova-Ladinska EB, Garcia-Siera F, Hurt J, Gertz HJ, Xuereb JH, Hills R, Brayne C, Huppert FA et al (2000) Staging of cytoskeletal and β-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer's disease. Am J Pathol 157(2):623–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanno T, Tsuchiya A, Shimizu T, Nakao S, Tanaka A, Nishizaki T (2013) Effects of newly synthesized DCP-LA-phospholipids on protein kinase C and protein phosphatases. Cell Physiol Biochem 31(4–5):555–564

    Article  CAS  PubMed  Google Scholar 

  34. Bayascas JR, Alessi DR (2005) Regulation of Akt/PKB Ser473 phosphorylation. Mol Cell 18(2):143–145

    Article  CAS  PubMed  Google Scholar 

  35. Gao T, Furnari F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18(1):13–24

    Article  CAS  PubMed  Google Scholar 

  36. Razmara M, Heldin CH, Lennartsson J (2013) Platelet-derived growth factor-induced Akt phosphorylation requires mTOR/Rictor and phospholipase C-γ1, whereas S6 phosphorylation depends on mTOR/Raptor and phospholipase D. Cell Commun Signal 11(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salminen A, Ojala J, Kaarniranta K, Hiltunen M, Soininen H (2011) Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer's disease. Prog Neurobiol 93(1):99–110

    Article  CAS  PubMed  Google Scholar 

  38. Wischik CM, Harrington CR, Storey JM (2014) Tau-aggregation inhibitor therapy for Alzheimer's disease. Biochem Pharmacol 88(4):529–539

    Article  CAS  PubMed  Google Scholar 

  39. Graham DL, Gray AJ, Joyce JA, Yu D, O'Moore J, Carlson GA, Shearman MS, Dellovade TL et al (2014) Increased O-GlcNAcylation reduces pathological tau without affecting its normal phosphorylation in a mouse model of tauopathy. Neuropharmacology 79:307–313

    Article  CAS  PubMed  Google Scholar 

  40. Ballatore C, Brunden KR, Piscitelli F, James MJ, Crowe A, Yao Y, Hyde E, Trojanowski JQ et al (2010) Discovery of brain-penetrant, orally bioavailable aminothienopyridazine inhibitors of tau aggregation. J Med Chem 53(9):3739–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brunden KR, Ballatore C, Lee VM, Smith AB 3rd, Trojanowski JQ (2012) Brain-penetrant microtubule-stabilizing compounds as potential therapeutic agents for tauopathies. Biochem Soc Trans 40(4):661–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tanaka A, Nishizaki T (2003) The newly synthesized linoleic acid derivative FR236924 induces a long-lasting facilitation of hippocampal neurotransmission by targeting nicotinic acetylcholine receptors. Bioorg Med Chem Lett 13(6):1037–1040

    Article  CAS  PubMed  Google Scholar 

  43. Yamamoto S, Kanno T, Nagata T, Yaguchi T, Tanaka A, Nishizaki T (2005) The linoleic acid derivative FR236924 facilitates hippocampal synaptic transmission by enhancing activity of presynaptic α7 acetylcholine receptors on the glutamatergic terminals. Neuroscience 130(1):207–213

    Article  CAS  PubMed  Google Scholar 

  44. Kanno T, Tanaka A, Nishizaki T (2012) Linoleic acid derivative DCP-LA stimulates vesicular transport of α7 ACh receptors towards surface membrane. Cell Physiol Biochem 30(1):75–82

    Article  CAS  PubMed  Google Scholar 

  45. Kanno T, Tsuchiya A, Tanaka A, Nishizaki T (2013) The linoleic acid derivative DCP-LA increases membrane surface localization of the α7 ACh receptor in a protein 4.1N-dependent manner. Biochem J 450(2):303–309

    Article  CAS  PubMed  Google Scholar 

  46. Kanno T, Yaguchi T, Nagata T, Tanaka A, Nishizaki T (2009) DCP-LA stimulates AMPA receptor exocytosis through CaMKII activation due to PP-1 inhibition. J Cell Physiol 221(1):183–188

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors state that there are no actual or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Nishizaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PDF 198 kb)

Supplementary Fig. 2

(PDF 64 kb)

Supplementary Fig. 3

(PDF 68 kb)

Supplementary Fig. 4

(PDF 285 kb)

Supplementary Fig. 5

(PDF 135 kb)

Supplementary Fig. 6

(PDF 220 kb)

Supplementary Fig. 7

(PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanno, T., Tsuchiya, A., Tanaka, A. et al. Combination of PKCε Activation and PTP1B Inhibition Effectively Suppresses Aβ-Induced GSK-3β Activation and Tau Phosphorylation. Mol Neurobiol 53, 4787–4797 (2016). https://doi.org/10.1007/s12035-015-9405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9405-x

Keywords

Navigation