Skip to main content

Advertisement

Log in

Molecular and Cellular Mechanism of Okadaic Acid (OKA)-Induced Neurotoxicity: A Novel Tool for Alzheimer’s Disease Therapeutic Application

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Okadaic acid (OKA), a polyether C38 fatty acid toxin extracted from a black sponge Hallichondria okadaii, is a potent and selective inhibitor of protein phosphatase, PP1 and PP2A. OKA has been proved to be a powerful probe for studying the various regulatory mechanisms and neurotoxicity. Because of its property to inhibit phosphatase activity, OKA is associated with protein phosphorylation; it is implicated in hyperphosphorylation of tau and in later stages causes Alzhiemer’s disease (AD)-like pathology. AD is a progressive neurodegenerative disorder, pathologically characterized by extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). The density of tau tangles in AD pathology is associated with cognitive dysfunction. Recent studies have highlighted the importance of serine/threonine protein phosphatases in many processes including apoptosis and neurotoxicity. Although OKA causes neurotoxicity by various pathways, the exact mechanism is still not clear. The activation of major kinases, such as Ser/Thr, MAPK, ERK, PKA, JNK, PKC, CaMKII, Calpain, and GSK3β, in neurons is associated with AD pathology. These kinases, associated with abnormal hyperphosphorylation of tau, suggest that the cascade of these kinases could exclusively be involved in the pathogenesis of AD. The activity of serine/threonine protein phosphatases needs extensive study as these enzymes are potential targets for novel therapeutics with applications in many diseases including cancer, inflammatory diseases, and neurodegeneration. There is a need to pay ample attention on MAPK kinase pathways in AD, and OKA can be a better tool to study cellular and molecular mechanism for AD pathology. This review elucidates the regulatory mechanism of PP2A and MAPK kinase and their possible mechanisms involved in OKA-induced apoptosis, neurotoxicity, and AD-like pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Alzhiemer’s disease

CaMKII:

Calmodulin kinase

Ser/Thr:

Serine threonine

OKA:

Okadaic acid

PKC:

Protein kinase C

PKA:

Proten kinase A

ERK:

Extracellular regulated kinases

MAPK:

Mitogen-activated protein kinases

GSK3β:

Glycogen synthase kinase

JNK:

c-Jun N-terminal kinases

PP2A:

Phosphatase 2A

Aβ:

Beta amyloid

NFT:

Neuro fibrillary tangle

References

  1. Cohen P, Holmes CF, Tsukitani Y (1990) Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci 15(3):98–102

    CAS  PubMed  Google Scholar 

  2. Kim D, Su J, Cotman CW (1999) Sequence of neurodegeneration and accumulation of phosphorylated tau in cultured neurons after okadaic acid treatment. Brain Res 839(2):253–262

    CAS  PubMed  Google Scholar 

  3. Malchiodi-Albedi F, Petrucci TC, Picconi B, Iosi F, Falchi M (1997) Protein phosphatase inhibitors induce modification of synapse structure and tau hyperphosphorylation in cultured rat hippocampal neurons. J Neurosci Res 48(5):425–438

    CAS  PubMed  Google Scholar 

  4. Wang J, Tung YC, Wang Y, Li XT, Iqbal K, Grundke-Iqbal I (2001) Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett 507(1):81–87

    CAS  PubMed  Google Scholar 

  5. Kamat PK, Tota S, Shukla R, Ali S, Najmi AK and Nath C Mitochondrial dysfunction: a crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain. Pharmacol Biochem Behav 100(2):311–319

  6. He J, Yamada K, Zou LB, Nabeshima T (2001) Spatial memory deficit and neurodegeneration induced by the direct injection of okadaic acid into the hippocampus in rats. J Neural Transm 108(12):1435–1443

    CAS  PubMed  Google Scholar 

  7. Arias C, Becerra-Garcia F, Arrieta I, Tapia R (1998) The protein phosphatase inhibitor okadaic acid induces heat shock protein expression and neurodegeneration in rat hippocampus in vivo. Exp Neurol 153(2):242–254

    CAS  PubMed  Google Scholar 

  8. Lee J, Hong H, Im J, Byun H, Kim D (2000) The formation of PHF-1 and SMI-31 positive dystrophic neurites in rat hippocampus following acute injection of okadaic acid. Neurosci Lett 282(1–2):49–52

    CAS  PubMed  Google Scholar 

  9. Sun L, Liu SY, Zhou XW, Wang XC, Liu R, Wang Q, Wang JZ (2003) Inhibition of protein phosphatase 2A- and protein phosphatase 1-induced tau hyperphosphorylation and impairment of spatial memory retention in rats. Neuroscience 118(4):1175–1182

    CAS  PubMed  Google Scholar 

  10. Kamat PK, Tota S, Saxena G, Shukla R and Nath C Okadaic acid (ICV) induced memory impairment in rats: a suitable experimental model to test anti-dementia activity. Brain Res 1309:66–74.

  11. Yoon SY, Choi JE, Yoon JH, Huh JW, Kim DH (2006) BACE inhibitor reduces APP-beta-C-terminal fragment accumulation in axonal swellings of okadaic acid-induced neurodegeneration. Neurobiol Dis 22(2):435–444

    CAS  PubMed  Google Scholar 

  12. Kamat PK, Tota S, Rai S, Shukla R, Ali S, Najmi AK and Nath C Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats. Eur J Pharmacol 690(1–3):90–98.

  13. Kamat PK, Tota S, Rai S, Swarnkar S, Shukla R and Nath C A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats. Life Sci 90(19–20):713–720.

  14. Kamat PK, Rai S and Nath C Okadaic acid induced neurotoxicity: an emerging tool to study Alzheimer’s disease pathology. Neurotoxicology 37:163–172.

  15. Kamat PK, Rai S, Swarnkar S, Shukla R, Ali S, Najmi AK and Nath C Okadaic acid-induced Tau phosphorylation in rat brain: role of NMDA receptor. Neuroscience 238:97–113.

  16. Duan DX, Chai GS, Ni ZF, Hu Y, Luo Y, Cheng XS, Chen NN, Wang JZ and Liu GP Phosphorylation of tau by death-associated protein kinase 1 antagonizes the kinase-induced cell apoptosis. J Alzheimers Dis 37(4):795–808.

  17. Li X, Uemura K, Hashimoto T, Nasser-Ghodsi N, Arimon M, Lill CM, Palazzolo I, Krainc D, Hyman BT and Berezovska O Neuronal activity and secreted amyloid beta lead to altered amyloid beta precursor protein and presenilin 1 interactions. Neurobiol Dis 50:127–134.

  18. Murray PS, Kirkwood CM, Gray MC, Fish KN, Ikonomovic MD, Hamilton RL, Kofler JK, Klunk WE, Lopez OL and Sweet RA Hyperphosphorylated tau is elevated in Alzheimer’s disease with psychosis. J Alzheimers Dis.

  19. Polydoro M, Dzhala VI, Pooler AM, Nicholls SB, McKinney AP, Sanchez L, Pitstick R, Carlson GA, Staley KJ, Spires-Jones TL and Hyman BT Soluble pathological tau in the entorhinal cortex leads to presynaptic deficits in an early Alzheimer’s disease model. Acta Neuropathol.

  20. Salcedo-Tello P, Hernandez-Ortega K and Arias C Susceptibility to GSK3beta-induced tau phosphorylation differs between the young and aged hippocampus after Wnt signaling inhibition. J Alzheimers Dis.

  21. Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, Zhang XF (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155

    CAS  PubMed  Google Scholar 

  22. Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76(1):1–10

    CAS  PubMed  Google Scholar 

  23. Sharma SK, Carew TJ (2004) The roles of MAPK cascades in synaptic plasticity and memory in Aplysia: facilitatory effects and inhibitory constraints. Learn Mem 11(4):373–378

    PubMed  Google Scholar 

  24. Toyoda H, Zhao MG, Xu H, Wu LJ, Ren M, Zhuo M (2007) Requirement of extracellular signal-regulated kinase/mitogen-activated protein kinase for long-term potentiation in adult mouse anterior cingulate cortex. Mol Pain 3:36

    PubMed Central  PubMed  Google Scholar 

  25. Hanyu Y, Imai KK, Kawasaki Y, Nakamura T, Nakaseko Y, Nagao K, Kokubu A, Ebe M, Fujisawa A, Hayashi T, Obuse C, Yanagida M (2009) Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitor. Genes Cells 14(5):539–554

    CAS  PubMed  Google Scholar 

  26. Sereno L, Coma M, Rodriguez M, Sanchez-Ferrer P, Sanchez MB, Gich I, Agullo JM, Perez M, Avila J, Guardia-Laguarta C, Clarimon J, Lleo A, Gomez-Isla T (2009) A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis 35(3):359–367

    CAS  PubMed  Google Scholar 

  27. Dickey AS and Strack S PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci 31(44):15716–15726.

  28. Jeong W, Kim J, Ahn SE, Lee SI, Bazer FW, Han JY and Song G AHCYL1 is mediated by estrogen-induced ERK1/2 MAPK cell signaling and microRNA regulation to effect functional aspects of the avian oviduct. PLoS One 7(11):e49204.

  29. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98(12):6923–6928

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Sato S, Tatebayashi Y, Akagi T, Chui DH, Murayama M, Miyasaka T, Planel E, Tanemura K, Sun X, Hashikawa T, Yoshioka K, Ishiguro K, Takashima A (2002) Aberrant tau phosphorylation by glycogen synthase kinase-3beta and JNK3 induces oligomeric tau fibrils in COS-7 cells. J Biol Chem 277(44):42060–42065

    CAS  PubMed  Google Scholar 

  31. Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm 112(6):813–838

    CAS  PubMed  Google Scholar 

  32. Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20(1–2):27–39

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Fath T, Eidenmuller J, Brandt R (2002) Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer’s disease. J Neurosci 22(22):9733–9741

    CAS  PubMed  Google Scholar 

  34. Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, Massachi S, Geschwind DH (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34(4):509–519

    CAS  PubMed  Google Scholar 

  35. Perez M, Hernandez F, Gomez-Ramos A, Smith M, Perry G, Avila J (2002) Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. Eur J Biochem 269(5):1484–1489

    CAS  PubMed  Google Scholar 

  36. Lu Y, He HJ, Zhou J, Miao JY, Lu J, He YG, Pan R, Wei Y, Liu Y and He RQ Hyperphosphorylation results in tau dysfunction in DNA folding and protection. J Alzheimers Dis 37(3):551–563.

  37. Sontag E, Luangpirom A, Hladik C, Mudrak I, Ogris E, Speciale S, White CL 3rd (2004) Altered expression levels of the protein phosphatase 2A ABalphaC enzyme are associated with Alzheimer disease pathology. J Neuropathol Exp Neurol 63(4):287–301

    CAS  PubMed  Google Scholar 

  38. Sugiyama N, Konoki K, Tachibana K (2007) Isolation and characterization of okadaic acid binding proteins from the marine sponge Halichondria okadai. Biochemistry 46(40):11410–11420

    CAS  PubMed  Google Scholar 

  39. Kins S, Kurosinski P, Nitsch RM, Gotz J (2003) Activation of the ERK and JNK signaling pathways caused by neuron-specific inhibition of PP2A in transgenic mice. Am J Pathol 163(3):833–843

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Honkanen RE, Zwiller J, Daily SL, Khatra BS, Dukelow M, Boynton AL (1991) Identification, purification, and characterization of a novel serine/threonine protein phosphatase from bovine brain. J Biol Chem 266(10):6614–6619

    CAS  PubMed  Google Scholar 

  41. Brewis ND, Street AJ, Prescott AR, Cohen PT (1993) PPX, a novel protein serine/threonine phosphatase localized to centrosomes. EMBO J 12(3):987–996

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Chen MX, McPartlin AE, Brown L, Chen YH, Barker HM, Cohen PT (1994) A novel human protein serine/threonine phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus. EMBO J 13(18):4278–4290

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Fernandez MT, Zitko V, Gascon S, Novelli A (1991) The marine toxin okadaic acid is a potent neurotoxin for cultured cerebellar neurons. Life Sci 49(19):PL157–PL162

    CAS  PubMed  Google Scholar 

  44. Sassa T, Richter WW, Uda N, Suganuma M, Suguri H, Yoshizawa S, Hirota M, Fujiki H (1989) Apparent “activation” of protein kinases by okadaic acid class tumor promoters. Biochem Biophys Res Commun 159(3):939–944

    CAS  PubMed  Google Scholar 

  45. Haystead TA, Sim AT, Carling D, Honnor RC, Tsukitani Y, Cohen P, Hardie DG (1989) Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337(6202):78–81

    CAS  PubMed  Google Scholar 

  46. Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K, Grundke-Iqbal I (2002) Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease. Brain Res Mol Brain Res 109(1–2):45–55

    CAS  PubMed  Google Scholar 

  47. Ferrer I, Blanco R (2000) N-myc and c-myc expression in Alzheimer disease, Huntington disease and Parkinson disease. Brain Res Mol Brain Res 77(2):270–276

    CAS  PubMed  Google Scholar 

  48. Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF (2001) Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer’s disease brains at different stages of neurofibrillary degeneration. J Alzheimers Dis 3(1):41–48

    CAS  PubMed  Google Scholar 

  49. Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K (2000) Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J Biol Chem 275(8):5535–5544

    CAS  PubMed  Google Scholar 

  50. Zhu Y, Qin L, Yoshida T, Inouye M (2000) Phosphatase activity of histidine kinase EnvZ without kinase catalytic domain. Proc Natl Acad Sci U S A 97(14):7808–7813

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Iqbal K, Alonso AD, Gondal JA, Gong CX, Haque N, Khatoon S, Sengupta A, Wang JZ, Grundke-Iqbal I (2000) Mechanism of neurofibrillary degeneration and pharmacologic therapeutic approach. J Neural Transm Suppl 59:213–222

    CAS  PubMed  Google Scholar 

  52. Zhang Y, Zhong S, Dong Z, Chen N, Bode AM, Ma W, Dong Z (2001) UVA induces Ser381 phosphorylation of p90RSK/MAPKAP-K1 via ERK and JNK pathways. J Biol Chem 276(18):14572–14580

    CAS  PubMed  Google Scholar 

  53. Zhang BH, Guan KL (2001) Regulation of the Raf kinase by phosphorylation. Exp Lung Res 27(3):269–295

    CAS  PubMed  Google Scholar 

  54. Roder HM, Eden PA, Ingram VM (1993) Brain protein kinase PK40erk converts TAU into a PHF-like form as found in Alzheimer’s disease. Biochem Biophys Res Commun 193(2):639–647

    CAS  PubMed  Google Scholar 

  55. Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K, Grundke-Iqbal I (2002) Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease. Brain Res Mol Brain Res 109(1–2):45–55

    CAS  PubMed  Google Scholar 

  56. Ferrer I, Blanco R, Carmona M, Puig B (2001) Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J Neural Transm 108(12):1397–1415

    CAS  PubMed  Google Scholar 

  57. Ferrer I, Blanco R, Carmona M, Puig B, Barrachina M, Gomez C, Ambrosio S (2001) Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson’s disease and dementia with Lewy bodies. J Neural Transm 108(12):1383–1396

    CAS  PubMed  Google Scholar 

  58. Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF (2001) Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer’s disease brains at different stages of neurofibrillary degeneration. J Alzheimers Dis 3(1):41–48

    CAS  PubMed  Google Scholar 

  59. Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA (2000) Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol 59(10):880–888

    CAS  PubMed  Google Scholar 

  60. Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K (2001) Inhibition of PP-2A upregulates CaMKII in rat forebrain and induces hyperphosphorylation of tau at Ser 262/356. FEBS Lett 490(1–2):15–22

    CAS  PubMed  Google Scholar 

  61. Pei JJ, Sersen E, Iqbal K, Grundke-Iqbal I (1994) Expression of protein phosphatases (PP-1, PP-2A, PP-2B and PTP-1B) and protein kinases (MAP kinase and P34cdc2) in the hippocampus of patients with Alzheimer disease and normal aged individuals. Brain Res 655(1–2):70–76

    CAS  PubMed  Google Scholar 

  62. Gong CX, Wegiel J, Lidsky T, Zuck L, Avila J, Wisniewski HM, Grundke-Iqbal I, Iqbal K (2000) Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. Brain Res 853(2):299–309

    CAS  PubMed  Google Scholar 

  63. Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K (2000) Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett 485(1):87–93

    CAS  PubMed  Google Scholar 

  64. Vogelsberg-Ragaglia V, Schuck T, Trojanowski JQ, Lee VM (2001) PP2A mRNA expression is quantitatively decreased in Alzheimer’s disease hippocampus. Exp Neurol 168(2):402–412

    CAS  PubMed  Google Scholar 

  65. Iqbal K, Alonso A, Gong C, Khatoon S, Kudo T, Singh T, Grundke-Iqbal I (1993) Molecular pathology of Alzheimer neurofibrillary degeneration. Acta Neurobiol Exp (Wars) 53(1):325–335

    CAS  Google Scholar 

  66. Parameswaran N, Nambi P, Hall CS, Brooks DP, Spielman WS (2000) Adrenomedullin decreases extracellular signal-regulated kinase activity through an increase in protein phosphatase-2A activity in mesangial cells. Eur J Pharmacol 388(2):133–138

    CAS  PubMed  Google Scholar 

  67. Pei JJ, Gong CX, An WL, Winblad B, Cowburn RF, Grundke-Iqbal I, Iqbal K (2003) Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer’s disease. Am J Pathol 163(3):845–858

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Kockx M, Guo DL, Traini M, Gaus K, Kay J, Wimmer-Kleikamp S, Rentero C, Burnett JR, Le Goff W, Van Eck M, Stow JL, Jessup W, Kritharides L (2009) Cyclosporin A decreases apolipoprotein E secretion from human macrophages via a protein phosphatase 2B-dependent and ATP-binding cassette transporter A1 (ABCA1)-independent pathway. J Biol Chem 284(36):24144–24154

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Chang HT, Cortez S, Vonsattel JP, Stopa EG, Schelper RL (2004) Familial frontotemporal dementia: a report of three cases of severe cerebral atrophy with rare inclusions that are negative for tau and synuclein, but positive for ubiquitin. Acta Neuropathol 108(1):10–16

    PubMed  Google Scholar 

  70. Zhang Y, Dong Z, Nomura M, Zhong S, Chen N, Bode AM, Dong Z (2001) Signal transduction pathways involved in phosphorylation and activation of p70S6K following exposure to UVA irradiation. J Biol Chem 276(24):20913–20923

    CAS  PubMed  Google Scholar 

  71. Parameswaran N, Nambi P, Hall CS, Brooks DP, Spielman WS (2000) Adrenomedullin decreases extracellular signal-regulated kinase activity through an increase in protein phosphatase-2A activity in mesangial cells. Eur J Pharmacol 388(2):133–138

    CAS  PubMed  Google Scholar 

  72. Adachi M, Fukuda M, Nishida E (2000) Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J Cell Biol 148(5):849–856

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Christopher DA, Li X, Kim M, Mullet JE (1997) Involvement of protein kinase and extraplastidic serine/threonine protein phosphatases in signaling pathways regulating plastid transcription and the psbD blue light-responsive promoter in barley. Plant Physiol 113(4):1273–1282

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239–252

    CAS  PubMed  Google Scholar 

  75. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Gao JX, Zhou YQ, Zhang RH, Ma XL, Liu KJ (2005) Caspase-3 plays a required role in PC12 cell apoptotic death induced by roscovitine. Sheng Li Xue Bao 57(6):755–760

    CAS  PubMed  Google Scholar 

  77. Ravindran J, Gupta N, Agrawal M, Bala Bhaskar AS and Lakshmana Rao PV Modulation of ROS/MAPK signaling pathways by okadaic acid leads to cell death via, mitochondrial mediated caspase-dependent mechanism. Apoptosis 16(2):145–161.

  78. Avila J, Leon-Espinosa G, Garcia E, Garcia-Escudero V, Hernandez F and Defelipe J Tau phosphorylation by GSK3 in different conditions. Int J Alzheimers Dis 2012:578373.

  79. Gong CX, Wang JZ, Iqbal K, Grundke-Iqbal I (2003) Inhibition of protein phosphatase 2A induces phosphorylation and accumulation of neurofilaments in metabolically active rat brain slices. Neurosci Lett 340(2):107–110

    CAS  PubMed  Google Scholar 

  80. Kimura T, Yamashita S, Nakao S, Park JM, Murayama M, Mizoroki T, Yoshiike Y, Sahara N, Takashima A (2008) GSK-3beta is required for memory reconsolidation in adult brain. PLoS One 3(10):e3540

    PubMed Central  PubMed  Google Scholar 

  81. Martin L, Page G and Terro F Tau phosphorylation and neuronal apoptosis induced by the blockade of PP2A preferentially involve GSK3beta. Neurochem Int 59(2):235–250.

  82. Takashima A (2006) GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 9(3 Suppl):309–317

    CAS  PubMed  Google Scholar 

  83. Leroy K, Yilmaz Z, Brion JP (2007) Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 33(1):43–55

    CAS  PubMed  Google Scholar 

  84. Ballou LM, Tian PY, Lin HY, Jiang YP, Lin RZ (2001) Dual regulation of glycogen synthase kinase-3beta by the alpha1A-adrenergic receptor. J Biol Chem 276(44):40910–40916

    CAS  PubMed  Google Scholar 

  85. Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, Massachi S, Geschwind DH (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34(4):509–519

    CAS  PubMed  Google Scholar 

  86. Engel T, Hernandez F, Avila J, Lucas JJ (2006) Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J Neurosci 26(19):5083–5090

    CAS  PubMed  Google Scholar 

  87. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, Feany MB (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293(5530):711–714

    CAS  PubMed  Google Scholar 

  88. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    CAS  PubMed  Google Scholar 

  89. Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A 102(19):6990–6995

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Balaraman Y, Limaye AR, Levey AI, Srinivasan S (2006) Glycogen synthase kinase 3beta and Alzheimer’s disease: pathophysiological and therapeutic significance. Cell Mol Life Sci 63(11):1226–1235

    CAS  PubMed  Google Scholar 

  91. Yoshimura Y, Ichinose T, Yamauchi T (2003) Phosphorylation of tau protein to sites found in Alzheimer’s disease brain is catalyzed by Ca2+/calmodulin-dependent protein kinase II as demonstrated tandem mass spectrometry. Neurosci Lett 353(3):185–188

    CAS  PubMed  Google Scholar 

  92. Hudmon A, Schulman H (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510

    CAS  PubMed  Google Scholar 

  93. Yamauchi T (2005) Neuronal Ca2+/calmodulin-dependent protein kinase II—discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull 28(8):1342–1354

    CAS  PubMed  Google Scholar 

  94. Fujisawa H (2001) Regulation of the activities of multifunctional Ca2+/calmodulin-dependent protein kinases. J Biochem 129(2):193–199

    CAS  PubMed  Google Scholar 

  95. Soderling TR, Chang B, Brickey D (2001) Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 276(6):3719–3722

    CAS  PubMed  Google Scholar 

  96. Chang BH, Mukherji S, Soderling TR (2001) Calcium/calmodulin-dependent protein kinase II inhibitor protein: localization of isoforms in rat brain. Neuroscience 102(4):767–777

    CAS  PubMed  Google Scholar 

  97. Hook SS, Means AR (2001) Ca(2+)/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 41:471–505

    CAS  PubMed  Google Scholar 

  98. Brindle PK, Montminy MR (1992) The CREB family of transcription activators. Curr Opin Genet Dev 2(2):199–204

    CAS  PubMed  Google Scholar 

  99. Garg S, Timm T, Mandelkow EM, Mandelkow E and Wang Y Cleavage of Tau by calpain in Alzheimer’s disease: the quest for the toxic 17 kD fragment. Neurobiol Aging 32(1):1–14.

  100. Nixon RA (2003) The calpains in aging and aging-related diseases. Ageing Res Rev 2(4):407–418

    CAS  PubMed  Google Scholar 

  101. Yamashima T Reconsider Alzheimer’s disease by the ‘calpain–cathepsin hypothesis’—a perspective review. Prog Neurobiol 105:1–23.

  102. Liu J, Liu MC, Wang KK (2008) Physiological and pathological actions of calpains in glutamatergic neurons. Sci Signal 1(23):tr3

    PubMed  Google Scholar 

  103. Liu J, Liu MC, Wang KK (2008) Calpain in the CNS: from synaptic function to neurotoxicity. Sci Signal 1(14):re1

    PubMed  Google Scholar 

  104. Yamauchi M, Yamaguchi T, Kaji H, Sugimoto T, Chihara K (2005) Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am J Physiol Endocrinol Metab 288(3):E608–E616

    CAS  PubMed  Google Scholar 

  105. Trinchese F, Fa M, Liu S, Zhang H, Hidalgo A, Schmidt SD, Yamaguchi H, Yoshii N, Mathews PM, Nixon RA, Arancio O (2008) Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. J Clin Invest 118(8):2796–2807

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Mattson MP, Chan SL (2001) Dysregulation of cellular calcium homeostasis in Alzheimer’s disease: bad genes and bad habits. J Mol Neurosci 17(2):205–224

    CAS  PubMed  Google Scholar 

  107. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA (2006) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27(11):1564–1576

    CAS  PubMed  Google Scholar 

  108. Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB, Markesbery WR (2006) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis 22(2):223–232

    CAS  PubMed  Google Scholar 

  109. Sontag E, Hladik C, Montgomery L, Luangpirom A, Mudrak I, Ogris E, White CL 3rd (2004) Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J Neuropathol Exp Neurol 63(10):1080–1091

    CAS  PubMed  Google Scholar 

  110. Celsi F, Svedberg M, Unger C, Cotman CW, Carri MT, Ottersen OP, Nordberg A, Torp R (2007) Beta-amyloid causes downregulation of calcineurin in neurons through induction of oxidative stress. Neurobiol Dis 26(2):342–352

    CAS  PubMed  Google Scholar 

  111. Yi KD, Covey DF, Simpkins JW (2009) Mechanism of okadaic acid-induced neuronal death and the effect of estrogens. J Neurochem 108(3):732–740

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Rahman A, Grundke-Iqbal I, Iqbal K (2005) Phosphothreonine-212 of Alzheimer abnormally hyperphosphorylated tau is a preferred substrate of protein phosphatase-1. Neurochem Res 30(2):277–287

    CAS  PubMed  Google Scholar 

  113. Poppek D, Keck S, Ermak G, Jung T, Stolzing A, Ullrich O, Davies KJ, Grune T (2006) Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem J 400(3):511–520

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Ho Y, Logue E, Callaway CW, DeFranco DB (2007) Different mechanisms account for extracellular-signal regulated kinase activation in distinct brain regions following global ischemia and reperfusion. Neuroscience 145(1):248–255

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Cargnello M and Roux PP Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83.

  116. Ray RM, Bhattacharya S, Johnson LR (2005) Protein phosphatase 2A regulates apoptosis in intestinal epithelial cells. J Biol Chem 280(35):31091–31100

    CAS  PubMed  Google Scholar 

  117. Garcia A, Cayla X, Caudron B, Deveaud E, Roncal F, Rebollo A (2004) New insights in protein phosphorylation: a signature for protein phosphatase 1 interacting proteins. CR Biol 327(2):93–97

    CAS  Google Scholar 

  118. Yoon S, Choi J, Yoon J, Huh JW, Kim D (2006) Okadaic acid induces JNK activation, bim overexpression and mitochondrial dysfunction in cultured rat cortical neurons. Neurosci Lett 394(3):190–195

    CAS  PubMed  Google Scholar 

  119. Kraft CA, Efimova T, Eckert RL (2007) Activation of PKCdelta and p38delta MAPK during okadaic acid dependent keratinocyte apoptosis. Arch Dermatol Res 299(2):71–83

    CAS  PubMed  Google Scholar 

  120. Rice AB, Ingram JL, Bonner JC (2002) p38 mitogen-activated protein kinase regulates growth factor-induced mitogenesis of rat pulmonary myofibroblasts. Am J Respir Cell Mol Biol 27(6):759–765

    CAS  PubMed  Google Scholar 

  121. Wang Z, Yang H, Tachado SD, Capo-Aponte JE, Bildin VN, Koziel H, Reinach PS (2006) Phosphatase-mediated crosstalk control of ERK and p38 MAPK signaling in corneal epithelial cells. Invest Ophthalmol Vis Sci 47(12):5267–5275

    PubMed  Google Scholar 

  122. Schonwasser DC, Marais RM, Marshall CJ, Parker PJ (1998) Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol 18(2):790–798

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Hu JY, Chen Y, Schacher S (2007) Multifunctional role of protein kinase C in regulating the formation and maturation of specific synapses. J Neurosci 27(43):11712–11724

    CAS  PubMed  Google Scholar 

  124. Yi KD, Covey DF, Simpkins JW (2009) Mechanism of okadaic acid-induced neuronal death and the effect of estrogens. J Neurochem 108(3):732–740

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Yi KD, Chung J, Pang P, Simpkins JW (2005) Role of protein phosphatases in estrogen-mediated neuroprotection. J Neurosci 25(31):7191–7198

    CAS  PubMed  Google Scholar 

  126. Yi KD, Simpkins JW (2008) Protein phosphatase 1, protein phosphatase 2A, and calcineurin play a role in estrogen-mediated neuroprotection. Endocrinology 149(10):5235–5243

    CAS  PubMed  Google Scholar 

  127. Yi KD, Cai ZY, Covey DF, Simpkins JW (2008) Estrogen receptor-independent neuroprotection via protein phosphatase preservation and attenuation of persistent extracellular signal-regulated kinase 1/2 activation. J Pharmacol Exp Ther 324(3):1188–1195

    CAS  PubMed  Google Scholar 

  128. Tunez I, Collado JA, Medina FJ, Munoz MC, Gordillo R, Sampedro C, Moyano MJ, Feijoo M, Muntane J, Montilla P (2006) Protective effect of carvedilol on oxidative stress induced by okadaic acid in N1E-115 cells. Pharmacol Res 54(3):241–246

    CAS  PubMed  Google Scholar 

  129. Yin YY, Liu H, Cong XB, Liu Z, Wang Q, Wang JZ, Zhu LQ (2010) Acetyl-l-carnitine attenuates okadaic acid induced tau hyperphosphorylation and spatial memory impairment in rats. J Alzheimers Dis 19(2):735–746

    CAS  PubMed  Google Scholar 

  130. Dwivedi, S., Nagarajan, R., Hanif, K., Siddiqui, H. H., Nath, C., & Shukla, R. (2013). Standardized extract of Bacopa monniera attenuates okadaic acid induced memory dysfunction in rats: effect on Nrf2 pathway. Evid Based Complement Alternat Med, 294501.

  131. Rajasekar N, Dwivedi S, Tota SK, Kamat PK, Hanif K, Nath C, Shukla R (2013) Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol 715(1–3):381–394

    CAS  PubMed  Google Scholar 

  132. Tunez I, Collado JA, Medina FJ, Munoz MC, Gordillo R, Sampedro C, Moyano MJ, Feijoo M, Muntane J, Montilla P (2006) Protective effect of carvedilol on oxidative stress induced by okadaic acid in N1E-115 cells. Pharmacol Res 54(3):241–246

    CAS  PubMed  Google Scholar 

  133. Wang YP, Li XT, Liu SJ, Zhou XW, Wang XC, Wang JZ (2004) Melatonin ameliorated okadaic-acid induced Alzheimer-like lesions. Acta Pharmacol Sin 25(3):276–280

    PubMed  Google Scholar 

  134. Montilla-Lopez P, Munoz-Agueda MC, Feijoo Lopez M, Munoz-Castaneda JR, Bujalance-Arenas I, Tunez-Finana I (2002) Comparison of melatonin versus vitamin C on oxidative stress and antioxidant enzyme activity in Alzheimer’s disease induced by okadaic acid in neuroblastoma cells. Eur J Pharmacol 451(3):237–243

    CAS  PubMed  Google Scholar 

  135. Li H, Wu X, Wu Q, Gong D, Shi M, Guan L, Zhang J, Liu J, Yuan B, Han G, Zou Y (2014) Green tea polyphenols protect against okadaic acid-induced acute learning and memory impairments in rats. Nutrition 30(3):337–342

    CAS  PubMed  Google Scholar 

  136. Song, X. Y., Hu, J. F., Chu, S. F., Zhang, Z., Xu, S., Yuan, Y. H., Han, N., Liu, Y., Niu, F., He, X., & Chen, N. H. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3beta/tau signaling pathway and the Abeta formation prevention in rats. Eur J Pharmacol, 710(1–3), 29–38.

  137. Cho, K., Yoon, S. Y., Choi, J. E., Kang, H. J., Jang, H. Y., & Kim, D. H. CA-074Me, a cathepsin B inhibitor, decreases APP accumulation and protects primary rat cortical neurons treated with okadaic acid. Neurosci Lett, 548, 222–227.

  138. Chen Y, Wang C, Hu M, Pan J, Chen J, Duan P, Zhai T, Ding J, Xu C (2012) Effects of ginkgolide A on okadaic acid-induced tau hyperphosphorylation and the PI3K-Akt signaling pathway in N2a cells. Planta Med 78(12):1337–1341

    CAS  PubMed  Google Scholar 

  139. Li, L., Liu, J., Yan, X., Qin, K., Shi, M., Lin, T., Zhu, Y., Kang, T., & Zhao, G. Protective effects of ginsenoside Rd against okadaic acid-induced neurotoxicity in vivo and in vitro. J Ethnopharmacol, 138(1), 135–141.

  140. Li, L., Liu, Z., Liu, J., Tai, X., Hu, X., Liu, X., Wu, Z., Zhang, G., Shi, M., & Zhao, G. Ginsenoside Rd attenuates beta-amyloid-induced tau phosphorylation by altering the functional balance of glycogen synthase kinase 3beta and protein phosphatase 2A. Neurobiol Dis, 54, 320–328.

  141. Li YK, Chen XC, Zhu YG, Peng XS, Zeng YQ, Sheng J, Huang TW (2005) Ginsenoside Rb1 attenuates okadaic acid-induced Tau protein hyperphosphorylation in rat hippocampal neurons. Sheng Li Xue Bao 57(2):154–160

    CAS  PubMed  Google Scholar 

  142. Zimmer ER, Kalinine E, Haas CB, Torrez VR, Souza DO, Muller AP, Portela LV (2010) Pretreatment with memantine prevents Alzheimer-like alterations induced by intrahippocampal okadaic acid administration in rats. Curr Alzheimer Res 9(10):1182–1190

    Google Scholar 

  143. Zhang J, Cheng Y, Zhang JT (2007) (2007) [Protective effect of (−) clausenamide against neurotoxicity induced by okadaic acid and beta-amyloid peptide25-35]. Yao Xue Xue Bao 42(9):935–942

    CAS  PubMed  Google Scholar 

  144. He J, Yang Y, Xu H, Zhang X, Li XM (2005) Olanzapine attenuates the okadaic acid-induced spatial memory impairment and hippocampal cell death in rats. Neuropsychopharmacology 30(8):1511–1520

    CAS  PubMed  Google Scholar 

  145. Suuronen T, Kolehmainen P, Salminen A (2000) Protective effect of l-deprenyl against apoptosis induced by okadaic acid in cultured neuronal cells. Biochem Pharmacol 59(12):1589–1595

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support to Pradip Kumar Kamat from the Council of Scientific and Industrial Research (CSIR) New Delhi, India is gratefully acknowledged

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip K. Kamat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamat, P.K., Rai, S., Swarnkar, S. et al. Molecular and Cellular Mechanism of Okadaic Acid (OKA)-Induced Neurotoxicity: A Novel Tool for Alzheimer’s Disease Therapeutic Application. Mol Neurobiol 50, 852–865 (2014). https://doi.org/10.1007/s12035-014-8699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8699-4

Keywords

Navigation